Effect of Cu-doping on structural, optical and photoluminescence properties of zinc titanates synthesized by solid state reaction

  • Budigi Lokesh
  • N. Madhusudhana Rao


Undoped and Cu-doped zinc titanates were synthesized by solid-state reaction. The structural and phase transition properties were studied using powder XRD. The elemental composition of the samples was studied using EDAX analysis. Optical studies were carried by measuring photoluminescence and diffused reflectance. Bandgap energies were calculated using Tauc’s relation from the diffuse reflectance spectra. A decrease in lattice parameters, unit cell volume and bandgap energies were observed with Cu doping in zinc titanate. Photoluminescence intensity at 386 nm in the violet region was enhanced on increasing Cu dopant concentration.


TiO2 Cu2O Microwave Dielectric Property Anatase TiO2 Zinc Titanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank VIT-SIF for providing powder XRD, Diffused reflectance spectrophotometer and Fluorescence spectrophotometer facilities. One of the authors Mr. Budigi Lokesh thanks VIT University management for providing financial support to carry out the present work.


  1. 1.
    F.H. Dublin, D.E. Rase, J. Am. Ceram. Soc. 3, 125 (1960)Google Scholar
  2. 2.
    J. Yang, J.H. Swisher, Mater. Charact. 37, 153 (1996)CrossRefGoogle Scholar
  3. 3.
    B. Li, Z. Yue, L. Li, J. Zhou, Z.J. Gui, Mater. Sci. Mater. Electron. 13, 415 (2002)CrossRefGoogle Scholar
  4. 4.
    S.F. Wang, M.K. Lu, F. Gu, D. Xu, D.R. Yuan, G.J. Zhou, Y.Z. Qi, Inorg. Chem. Commun. 6, 185 (2003)CrossRefGoogle Scholar
  5. 5.
    Y. Inaguma, A. Aimi, Y. Shirako, D. Sakurai, D. Mori, H. Kojitani, M. Akaogi, M. Nakayama, J. Am. Chem. Soc. 136, 2748 (2014)CrossRefGoogle Scholar
  6. 6.
    O. Yamaguchi, M. Morimi, H. Kawabata, K. Shimizu, J. Am. Ceram. Soc. 70, C97 (1987)Google Scholar
  7. 7.
    J. Yang, J.H. Swisher, Mater. Charact. 37, 153 (1996)CrossRefGoogle Scholar
  8. 8.
    H.T. Kim, S. Nahm, J.D. Byun, J. Am. Ceram. Soc. 82, 3476 (1999)CrossRefGoogle Scholar
  9. 9.
    H.T. Kim, M.T. Lanagan, J. Am. Ceram. Soc. 86, 1874 (2004)CrossRefGoogle Scholar
  10. 10.
    Y.S. Chang, Y.H. Chang, I.G. Chen, G.J. Chen, Solid State Commun. 128, 203 (2003)CrossRefGoogle Scholar
  11. 11.
    S.Y. Chang, Y.H. Chang, I.G. Chen, G.J. Chen, Y.L. Chai, S. Wu, T.H. Fang, J. Alloys Compd. 354, 303 (2003)CrossRefGoogle Scholar
  12. 12.
    J. Luo, X. Xing, R. Yu, Q. Xing, D. Zhang, X. Chen, J. Alloys Compd. 402, 263 (2005)CrossRefGoogle Scholar
  13. 13.
    S.C. Souza, M.A.F. Souza, S.J.G. Lima, M.R. Cassia-Santos, V.J. Fernandes Jr, L.E.B. Soledade, E. Longo, A.G. Souza, L.M.G. Santos, J. Therm. Anal. Calorim. 79, 455 (2005)CrossRefGoogle Scholar
  14. 14.
    M.L. Hsieh, L.S. Chen, H.C. Hsu, S. Wang, M.P. Houng, S.L. Fu, Mater. Res. Bull. 43, 3122 (2008)CrossRefGoogle Scholar
  15. 15.
    M. Zhen, X. Xing, J. Deng, L. Li, J. Zhao, L. Qiao, C. Fang, J. Alloys Compd. 456, 353 (2008)CrossRefGoogle Scholar
  16. 16.
    G. Zhou, H. Sun, S. Wang, H.M. Ang, M.O. Tade, Sep. Purif. Technol. 80, 626 (2011)CrossRefGoogle Scholar
  17. 17.
    J. Luo, X. Xing, R. Yu, Q. Xing, G. Liu, D. Zhang, X. Chen, J. Alloys Compd. 420, 317 (2006)CrossRefGoogle Scholar
  18. 18.
    M. Zheng, R. Yu, J. Chen, J. Zhao, G. Liu, X. Xing, J. Meng, J. Am. Ceram. Soc. 91, 544 (2008)CrossRefGoogle Scholar
  19. 19.
    Y.C. Lee, P.S. Chen, Thin Solid Films 520, 2672 (2012)CrossRefGoogle Scholar
  20. 20.
    T. Surendar, S. Kumar, V. Shanker, Phys. Chem. Chem. Phys. 16, 728 (2014)CrossRefGoogle Scholar
  21. 21.
    J. Mrazek, L. Spanhel, M. Surynek, M. Potel, V. Matejec, J. Alloys Compd. 509, 4018 (2011)CrossRefGoogle Scholar
  22. 22.
    X. Liu, F. Gao, L. Zhao, C. Tian, J. Mater. Sci.: Mater. Electron. 18, 863 (2007)Google Scholar
  23. 23.
    X. Liu, M. Zhao, F. Gao, L. Zhao, J. Alloys Compd. 450, 440 (2008)CrossRefGoogle Scholar
  24. 24.
    M.E. Fragala, I. Cacciotti, Y. Aleeva, R.L. Nigro, A. Bianco, G. Malandrino, C. Spinella, G. Pezzotti, G. Gusmano, Cryst. Eng. Commun. 12, 3858 (2010)CrossRefGoogle Scholar
  25. 25.
    M.S.P. Francisco, V.R. Mastelaro, Chem. Mater. 14, 2514 (2002)CrossRefGoogle Scholar
  26. 26.
    D.M.A. Melo, A. Cesar, A.E. Martinelli, Z.R. Silva, E.R. Leite, E. Longo, P.S. Pianni, J. Solid Sate Chem. 177, 670 (2004)CrossRefGoogle Scholar
  27. 27.
    L.G. Teoh, W.H. Lu, T.H. Lin, Y.C. Lee, J. Nanomater. (2012). doi: 10.1155/2012/539657 Google Scholar
  28. 28.
    H.T. Kim, J.C. Wang, J. Nam, B.H. Choi, J. Mater. Res. 18, 1067 (2003)CrossRefGoogle Scholar
  29. 29.
    Y.L. Chai, Y.S. Chang, L.G. Teoh, Y.J. Lin, Y.J. Hsiao, J. Mater. Sci. 43, 6771 (2008)CrossRefGoogle Scholar
  30. 30.
    J. Mrazek, L. Spanhel, G. Chadeyron, V. Matejec, J. Phys. Chem. C 114, 2843 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Thin Films Laboratory, Centre for Crystal GrowthVIT UniversityVelloreIndia

Personalised recommendations