Influence of pH on the photocatalytic activity of ZnO nanoparticles



In this study, ZnO nanoparticles were fabricated by co-precipitation method. The synthesized nanoparticles possessed monodispersity with the average size 20–30 nm. Since the industrial effluents may not be at neutral pH, the effect of pH on the rate of degradation is important and need to be considered. In order to investigate the effect of pH on ZnO nanoparticles photocatalytic activity, the photocatalytic degradation of Rose Bengal, Methylene blue, and Bromocresol green dyes, was studied with different pH values. It was observed that the adsorption of the dyes onto ZnO nanoparticles surface is strongly dependent on the pH of the solution which plays an important role in photocatalytic degradation.


Methylene Blue Photocatalytic Activity Photocatalytic Degradation Calcination Temperature Rose Bengal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Shahid Chamran University of Ahvaz for financial support.


  1. 1.
    Q.I. Rahman, M. Ahmad, S.K. Misra, M. Lohani, Mater. Lett. 91, 170 (2013)CrossRefGoogle Scholar
  2. 2.
    S.P. Buthelezi, A.O. Olaniran, B. Pillay, Molecules 17, 14260 (2012)CrossRefGoogle Scholar
  3. 3.
    A.M. Abdulkarem, E.M. Elssfah, N.-N. Yan, G. Demissie, Y. Yu, J. Phys. Chem. Solids 74, 647 (2013)CrossRefGoogle Scholar
  4. 4.
    S. Suwanboon, P. Amornpitoksuk, A. Sukolrat, N. Muensit, Ceram. Int. 39, 2811 (2013)CrossRefGoogle Scholar
  5. 5.
    X. Cai, Y. Cai, Y. Liu, H. Li, F. Zhang, Y. Wang, J. Phys. Chem. Solids 74, 1196 (2013)CrossRefGoogle Scholar
  6. 6.
    T. Madrakian, A. Afkhami, M. Ahmadi, Spectrochim. Acta A 99, 102 (2012)CrossRefGoogle Scholar
  7. 7.
    I.A. Siddiquey, T. Furusawa, M. Sato, N.M. Bahadur, M.M. Alam, N. Suzuki, Ultrason. Sonochem. 19, 750 (2012)CrossRefGoogle Scholar
  8. 8.
    G.M. Nair, M. Nirmala, K. Rekha, A. Anukaliani, Mater. Lett. 65, 1797 (2011)CrossRefGoogle Scholar
  9. 9.
    R. Yousefi, F. Jamali-Sheini, M. Cheraghizade, S. Khosravi-Gandomani, A. Sáaedi, N.M. Huang, W.J. Basirun, M. Azarang, Mater. Sci. Semicond. Process. 32, 152 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Azarang, A. Shuhaimi, R. Yousefi, A.M. Golsheikh, M. Sookhakian, Ceram. Int. 40, 10217 (2014)CrossRefGoogle Scholar
  11. 11.
    F. Feng, C. Hao, H. Zhang, W. Xie, X. Wang, Y. Zhao, J. Mater. Sci.: Mater. Electron. 26, 6704 (2015)Google Scholar
  12. 12.
    S.V. Elangovan, N. Sivakumar, V. Chandramohan, J. Mater. Sci.: Mater. Electron. 26, 8753 (2015)Google Scholar
  13. 13.
    I. Kazeminezhad, A. Sadollahkhani, M. Farbod, Mater. Lett. 92, 29 (2013)CrossRefGoogle Scholar
  14. 14.
    K. Vignesh, A. Suganthi, M. Rajarajan, S.A. Sara, Powder Technol. 224, 331 (2012)CrossRefGoogle Scholar
  15. 15.
    J. Tauc, A. Menth, J. Non-Cryst. Solids 8, 569 (1972)CrossRefGoogle Scholar
  16. 16.
    S.M. Lam, J.C. Sin, A.Z. Abdullah, A.R. Mohamed, Desalination 41, 131 (2012)CrossRefGoogle Scholar
  17. 17.
    U.G. Akpan, B.H. Hameed, Hazard. Mater. 170, 520 (2009)CrossRefGoogle Scholar
  18. 18.
    L.G. Devi, K.M. Reddy, Appl. Surf. Sci. 256, 3116 (2010)CrossRefGoogle Scholar
  19. 19.
    X. Li, Y. Hou, Q. Zhao, L. Wang, J. Colloid Interface Sci. 358, 102 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Nanotechnology Lab, Department of PhysicsShahid Chamran University of AhvazAhvazIran

Personalised recommendations