Advertisement

Effect of alkaline earth metal oxides on the dielectric, structural and physico-chemical properties of lithium–zinc–lead-borates

  • Reham M. M. Morsi
  • Safeya Ibrahim
  • Sherief Abo-Naf
  • Morsi M. Morsi
Article

Abstract

We report changes in the properties of lithium-zinc-lead-borate glass (mol%: 5Li2O·10ZnO·60PbO·25B2O3) brought by substituting alkaline earth metal oxides for part of its Li2O content. These properties include density, optical basicity, molecular structure, conductivity, dielectric properties and chemical durability. The glasses were prepared by the melting quenching technique. The effect of substituting 2 mol% Li2O by equivalent moles of MgO, CaO, SrO or BaO on the above mentioned properties is reported. The results showed that an increase in the density and the optical basicity is noticed for samples with substituted oxides in the order MgO, CaO, SrO or BaO. The FTIR also revealed that the BO3 units with NBOs of the glasses increase with such substitution. The chemical durability was increased for glass with substituted MgO, while it decreased for those with substituted CaO, SrO or BaO. The conductivities of the base glass sample and that substituted with MgO are found to be mainly ionic while they are mainly electronic for those substituted with CaO, SrO or BaO. The dielectric permittivity revealed a value of 11.72 for the base un-substituted glass which increased to 394.02 at room temperature for glass substituted with BaO. The substituted samples with alkaline earth metal oxides produced glassy materials of high dielectric permittivity (ε′) that could present good candidate for energy storage in electronic devices.

Keywords

Dielectric Permittivity Li2O Glass Sample Glass Structure Borate Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G.D. Khattak, N. Tabet, Phys. Rev. B 72, 104203 (2005)CrossRefGoogle Scholar
  2. 2.
    S. Murugavel, B. Roling, Phys. Rev. B 76, 180202 (2007)CrossRefGoogle Scholar
  3. 3.
    Ch. Rajasree, K. Rao, J. Non-Cryst. Solids 357, 836 (2011)CrossRefGoogle Scholar
  4. 4.
    S.L.S. Rao, G. Ramadevudu, Md Shareefuddin, A. Hameed, M.N. Chary, M.L. Rao, Int. J. Eng. Sci. Technol. 4, 25 (2012)Google Scholar
  5. 5.
    M. Ganguli, K.J. Rao, J. Solid State Chem. 145, 65 (1999)CrossRefGoogle Scholar
  6. 6.
    P.J. Bray, M. Leventhal, H.O. Hooper, Phys. Chem. Glasses 4, 47 (1963)Google Scholar
  7. 7.
    B.N. Meera, A.K. Sood, N. Chandrabhas, J. Non-Cryst. Solids 126, 224 (1990)CrossRefGoogle Scholar
  8. 8.
    Y.B. Saddeek, J. Alloys Compd. 467, 14 (2009)CrossRefGoogle Scholar
  9. 9.
    R.C. Lucacel, I. Ardelean, J. Non-Cryst. Solids 353, 2020 (2007)CrossRefGoogle Scholar
  10. 10.
    Y. Cheng, H. Xiao, W. Guo, Ceram. Int. 33, 1341 (2007)CrossRefGoogle Scholar
  11. 11.
    T. Inoue, T. Honma, V. Dimitrov, T. Komatsu, J. Solid State Chem. 183, 3078 (2010)CrossRefGoogle Scholar
  12. 12.
    V. Dimitrov, S. Sakka, J. Appl. Phys. 79, 1736 (1996)CrossRefGoogle Scholar
  13. 13.
    V.F. Sears, Neutrons News 3, 26 (1992)CrossRefGoogle Scholar
  14. 14.
    H. Ushida, Y. Iwadate, T. Hattori, J. Alloys Compd. 377, 167 (2004)CrossRefGoogle Scholar
  15. 15.
    G.D. Chryssikos, E.I. Kamitsos, M.A. Karakassides, Phys. Chem. Glasses 31, 109 (1990)Google Scholar
  16. 16.
    R.C. Lucacel, C. Marcus, V. Timar, I. Ardelean, Solid State Sci. 9, 850 (2007)CrossRefGoogle Scholar
  17. 17.
    C. Erdogan, M. Bengisu, S.A. Erenturk, J. Nuclear Mater. 445, 154 (2014)CrossRefGoogle Scholar
  18. 18.
    S. Rada, P. Pascuta, M. Culea, V. Maties, M. Rada, M. Barlea, E. Culea, J. Mol. Struct. 924–926, 89 (2009)CrossRefGoogle Scholar
  19. 19.
    N.M. Bobkova, Glass Ceram. 66, 206 (2009)CrossRefGoogle Scholar
  20. 20.
    J. Coelho, C. Freire, N.S. Hussain, Spectrochim. Acta, Part A 86, 392 (2012)CrossRefGoogle Scholar
  21. 21.
    Y.B. Saddeek, L.A.E. Latif, Phys. B 348, 475–484 (2004)CrossRefGoogle Scholar
  22. 22.
    M.S. Reddy, G.N. Raju, G. Nagarjuna, N. Veeraiah, J. Alloys Compd. 438, 41 (2007)CrossRefGoogle Scholar
  23. 23.
    A. Thulasiramudu, S. Buddhudu, J. Quant. Spectrosc. Radiat. Transf. 97, 181 (2006)CrossRefGoogle Scholar
  24. 24.
    S. Stefanov, Glass Tech. 41, 193 (2000)Google Scholar
  25. 25.
    K. Aida, T. Komatsu, V. Dimitrov, Phys. Chem. Glasses 42, 103 (2001)Google Scholar
  26. 26.
    H.L. Tuller, P.K. Moon, Mater. Sci. Eng. B 1, 171 (1988)CrossRefGoogle Scholar
  27. 27.
    N.K. Sanjay, A. Agarwal, J. Alloys Compd. 487, 52 (2009)CrossRefGoogle Scholar
  28. 28.
    J.A. Duffy, M.D. Ingram, in Optical Properties of Glass, ed. by D. Uhlman, N. Kreidl, Am. Ceram. Soc. Westervill (1991)Google Scholar
  29. 29.
    V. Dimitrov, T. Komatsu, J. Ceram. Soc. Jpn. 107, 1012 (1999)CrossRefGoogle Scholar
  30. 30.
    V. Dimitrov, T. Komatsu, J. Univ. Chem. Technol. Met. (Sofia) 45, 219 (2010)Google Scholar
  31. 31.
    S. Ibrahim, M.M. Morsi, Mater. Chem. Phys. 138, 628 (2013)CrossRefGoogle Scholar
  32. 32.
    I. Szabo, G. Volksch, W. Holland, J. Non-Cryst. Solids 272, 191 (2000)CrossRefGoogle Scholar
  33. 33.
    P.B. Adams, M.E. Mordberg, H.V. Wolters, Glass Technol. 5, 136 (1964)Google Scholar
  34. 34.
    R.M.M. Morsi, S. Ibrahim, M.M. Morsi, J. Mater. Sci.: Mater. Electron. 26, 1419 (2015)Google Scholar
  35. 35.
    B. Kumar, T. Vijaya, M. Sankarappa, S. Kumar, P.J.P. Kumar, R. Sadashivaiah, R. Reddy, Phys. B 404, 3487 (2006)CrossRefGoogle Scholar
  36. 36.
    J.C. Dyre, J. Non-Cryst. Solids 135, 219 (1991)CrossRefGoogle Scholar
  37. 37.
    H. El. Mkami, B. Deroide, R. Backov, J.V. Zanchetta, J. Phys. Chem. Solids 61, 819 (2000)CrossRefGoogle Scholar
  38. 38.
    E. Kamitsos, Y. Yiannopoulos, J. Duffy, J. Phys. Chem. B 106, 8988 (2002)CrossRefGoogle Scholar
  39. 39.
    S. Sanghi, S. Rani, A. Agarwal, V. Bhatnagar, Mater. Chem. Phys. 120, 381 (2010)CrossRefGoogle Scholar
  40. 40.
    J.A. Duffy, Phys. Chem. Glasses 30, 1 (1989)Google Scholar
  41. 41.
    R.J.G.P.L. Higby, I.D. Aggarwal, E.J. Friebele, J. Non-Cryst. Solids 126, 209 (1990)CrossRefGoogle Scholar
  42. 42.
    R. Yang, Y. Wang, X. Hao, J. Zhan, S. Liu, J. Non-Cryst. Solids 357, 2192 (2011)CrossRefGoogle Scholar
  43. 43.
    A.I. Priven, Glass Phys. Chem. 26, 541 (2000)CrossRefGoogle Scholar
  44. 44.
    P. Pascuta, S. Rada, G. Borodi, M. Bosca, L. Popa, E. Culea, J. Mol. Struct. 924–926, 214 (2009)CrossRefGoogle Scholar
  45. 45.
    W.A. Pisarski, T. Goryczka, B. Wodecka-Du´s, M. Pło´nska, J. Pisarska Mater. Sci. Eng. B 122, 94 (2005)CrossRefGoogle Scholar
  46. 46.
    E.I. Kamitsos, A.P. Patsis, M.A. Karakassides, G.D. Chryssikos, J. Non-Cryst. Solids 126, 52 (1990)CrossRefGoogle Scholar
  47. 47.
    B.K. Sudhakar, N.R.K. Chand, H.N.L. Prasanna, G.S. Rao, K.V. Rao, V. Dhand, J. Non-Cryst. Solids 356, 2211 (2010)CrossRefGoogle Scholar
  48. 48.
    B. Sumalatha, I. Omkaram, T.R. Rao, ChL Raju, Phys. B 411, 99 (2013)CrossRefGoogle Scholar
  49. 49.
    G.E. Walrafen, S.R. Samanta, P.N. Krishnan, J. Phys. Chem. 72, 113 (1980)CrossRefGoogle Scholar
  50. 50.
    I. Ardelean, C. Simona, R. Dorina, Phys. B 403, 3682 (2008)CrossRefGoogle Scholar
  51. 51.
    O. Cozar, I. Ardelean, I. Bratu, S. Simon, C. Craciun, L. David, C. Cefan, J. Mol. Struct. 563, 421 (2001)CrossRefGoogle Scholar
  52. 52.
    P. Pascuta, B. Gheorghe, C. Eugen, J. Non-Cryst. Solids 354, 5475 (2008)CrossRefGoogle Scholar
  53. 53.
    A.K. Hassan, L. Borjesson, L.M. Torell, J. Non-Cryst. Solids 172–174, 154 (1994)CrossRefGoogle Scholar
  54. 54.
    B. Karthikeyan, S. Mohan, Phys. B 334, 298 (2003)CrossRefGoogle Scholar
  55. 55.
    R.B. Rao, R.A. Gerhardt, Mater. Chem. Phys. 112, 186 (2008)CrossRefGoogle Scholar
  56. 56.
    I. Gustian, S.Ü. Çelik, A. Zainuddin, W. Suratno, A. Bozkurt, R.E. Siregar, J. Math. Fund. Sci. 46, 50 (2014)CrossRefGoogle Scholar
  57. 57.
    R. Vaish, K.B.R. Varma, Phys. Rev. B 42, 1388 (1990)CrossRefGoogle Scholar
  58. 58.
    ShA Mansour, I.S. Yahia, F. Yakuphanoglu, Dyes Pigments 87, 144 (2010)CrossRefGoogle Scholar
  59. 59.
    N.F. Mott, J. Non-Cryst. Solids 1, 1 (1968)CrossRefGoogle Scholar
  60. 60.
    M.H. Buraidah, L.P. Teo, S.R. Majid, A.K. Arof, Phys. B 404, 1373 (2009)CrossRefGoogle Scholar
  61. 61.
    J.T. Gudmundsson, H.G. Svavarsson, S. Gudjonsson, H.P. Gislason, Phys. B 340, 324 (2003)CrossRefGoogle Scholar
  62. 62.
    W. Jung, Phys. B 403, 636 (2008)CrossRefGoogle Scholar
  63. 63.
    R. Kumar, S.K. Arora, I.V. Shvets, N.E. Rajeevan, P.P. Pradyumnan, D.K. Shukla, J. Appl. Phys. 105, 07D910 (2009)Google Scholar
  64. 64.
    E. Abd El-Wahabb, Acta Phys. Pol. A 108, 985 (2005)CrossRefGoogle Scholar
  65. 65.
    S. Mahadevan, A. Giridhar, K.J. Rao, J. Phys. C: Solid State Phys. 10, 4499 (1977)CrossRefGoogle Scholar
  66. 66.
    E.M.A. Hamzawy, R.M.M. Morsi, F.H. Margha, J. Mater. Sci.: Mater. Electron. 26, 1252 (2015)Google Scholar
  67. 67.
    M.H. Suhail, I.M. Al-Essa, R.A. Ahmed, Int. J. Eng. Tech. Res. (IJETR) 2, 379 (2014)Google Scholar
  68. 68.
    M.W. Barsoum, “Fundamentals of Ceramics”, (Series in Material Science and Engineering) (McGraw-Hill, New York, 1977), p. 543Google Scholar
  69. 69.
    F. Carpi, D.D. Rossi, R. Kornbluh, R. Pelrine, P.S. Larsen (eds.), Dielectric Elastomers as Electromechanical Transducers (Elsevier, Hungary, 2008), p. 344Google Scholar
  70. 70.
    N.D. Sankır, E. Aydın, M. Sankır, Int. J. Electrochem. Sci. 9, 3864 (2014)Google Scholar
  71. 71.
    A.G. Mostafaa, A.H. El-Dosokey, K.H. Idress, H.M. Goumaa, Int. J. Res. Eng. Sci. (IJRES) 2, 58 (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Reham M. M. Morsi
    • 1
  • Safeya Ibrahim
    • 2
  • Sherief Abo-Naf
    • 2
  • Morsi M. Morsi
    • 2
  1. 1.Physical Chemistry DepartmentNational Research CentreDokki, CairoEgypt
  2. 2.Glass Research DepartmentNational Research CentreDokki, CairoEgypt

Personalised recommendations