Advertisement

Investigation of the electrical properties of liquid-phase sintered ZnO–V2O5 based varistor ceramics using impedance and dielectric spectroscopy

  • Shreevats Pandey
  • Devendra Kumar
  • Om Parkash
Article

Abstract

The influence of Nb2O5 and a mixture of Nb2O5 and MnCO3 on the electrical and dielectric properties of liquid-phase sintered ZnO–V2O5 ceramics were studied by impedance spectroscopy over a frequency range from 10 mHz to 1 MHz at different temperatures. The impedance data, represented by means of Nyquist diagrams, show two time constants with different activation energies, one at high frequencies and the other at low frequencies. These activation energies were associated with the adsorption and reaction of O2 species at the grain boundary interface. The resistance and the capacitance of grain-boundary regions were determined by modeling the experimental results using equivalent circuits. Analysis of the frequency dependence of the impedance of the material shows the presence of a non-Debye type of relaxation. The Arrhenius plots show two slopes with a turnover at 150/200 °C for both the higher and lower frequency time constants. These behaviors can be related with the decrease of minor charge carrier density. Consequently, better varistor performance is achieved for 97.4 mol% ZnO + 0.5 mol% V2O5 + 0.10 mol% Nb2O5 + 2.0 mol% MnCO3 with nonlinear coefficient α = 24.3, breakdown field E1mA = 498.5 V/mm and leakage current density JL = 63.114 µA/cm2. X-ray diffraction and scanning electron microscopy techniques were used to characterize the crystal structure and surface morphology of the material respectively. For all the samples, other than the major ZnO phase, Zn3(VO4)2 were detected as minor secondary phases. SEM morphology shows that the average grain size depends on the Nb and Mn content.

Keywords

V2O5 Nb2O5 Nonlinear Coefficient Breakdown Field Nb2O5 Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are cordially thankful to Central Instrument Facility Centre, Indian Institute of Technology, Banaras Hindu University, Varanasi, India for providing EDS facility.

References

  1. 1.
    L.M. Levinson, H.R. Philipp, J. Appl. Phys. 46(3), 1332–1341 (1975)CrossRefGoogle Scholar
  2. 2.
    G.D. Mahan, L.M. Levinson, H.R. Philipp, J. Appl. Phys. 50(4), 2799–2812 (1979)CrossRefGoogle Scholar
  3. 3.
    P.L. Hower, T.K. Gupta, J. Appl. Phys. 50(7), 4847–4855 (1979)CrossRefGoogle Scholar
  4. 4.
    K. Eda, A. Iga, M. Matsuoka, J. Appl. Phys. 51, 2678–2684 (1980)CrossRefGoogle Scholar
  5. 5.
    K. Eda, M. Inada, M. Matuoka, J. Appl. Phys. 542(2), 1095–1099 (1983)CrossRefGoogle Scholar
  6. 6.
    G.S. Pike, S.R. Kurtz, P.L. Gourley, H.R. Philipp, L.M. Levinson, J. Appl. Phys. 57, 5512–5518 (1985)CrossRefGoogle Scholar
  7. 7.
    H.R. Philipp, L.M. Levinson, J. Appl. Phys. 50, 383 (1979)CrossRefGoogle Scholar
  8. 8.
    L.M. Levinson, Am. Ceram. Soc. (Westerville, OH) 3, 31–53 (1989)Google Scholar
  9. 9.
    T. Gupta, J. Am. Ceram. Soc. 73(7), 1817–1840 (1990)CrossRefGoogle Scholar
  10. 10.
    J.K. Tsai, T.B. Wu, J. Appl. Phys. 76, 4817 (1994)CrossRefGoogle Scholar
  11. 11.
    J.K. Tsai, T.B. Wu, Mater. Lett. 26, 199–203 (1996)CrossRefGoogle Scholar
  12. 12.
    C.T. Kuo, C.S. Chen, I.N. Lin, J. Am. Ceram. Soc. 81, 2942–2948 (1998)CrossRefGoogle Scholar
  13. 13.
    H.-H. Hng, K.M. Knowles, J. Eur. Ceram. Soc. 19, 721–726 (1999)CrossRefGoogle Scholar
  14. 14.
    H.-H. Hng, K.M. Knowles, J. Am. Ceram. Soc. 83, 2455–2462 (2000)CrossRefGoogle Scholar
  15. 15.
    C.W. Nahm, Solid State Commun. 143, 453–456 (2007)CrossRefGoogle Scholar
  16. 16.
    C.W. Nahm, J. Mater. Sci. Mater. Electron. 19, 1023 (2008)CrossRefGoogle Scholar
  17. 17.
    C.W. Nahm, Mater. Sci. Eng. B 150, 32 (2008)CrossRefGoogle Scholar
  18. 18.
    C.W. Nahm, Ceram. Int. 35, 2679 (2009)CrossRefGoogle Scholar
  19. 19.
    C.W. Nahm, Mater. Lett. 64(7), 830–832 (2010)CrossRefGoogle Scholar
  20. 20.
    C.W. Nahm, J. Mater. Sci. Mater. Electron. 26, 4144–4151 (2015)CrossRefGoogle Scholar
  21. 21.
    A.R. West, M. Andres-Verges, J. Electroceram. 1–2, 125–132 (1997)CrossRefGoogle Scholar
  22. 22.
    A. Pandey, O. Parkash, D. Kumar, J. Mater. Sci. Mater. Electron. 19(11), 1122–1127 (2007)CrossRefGoogle Scholar
  23. 23.
    G. Chen, J. Li, X. Chen, X. Kang, C. Yuan, J. Mater. Sci. Mater. Electron. 26, 2389–2396 (2015)CrossRefGoogle Scholar
  24. 24.
    W. Jun, T. Qi, T.T. Li, Q.W. Qin, G.Q. Li, B.L. Zhu, Z.D. Xiang, S.C. Xie, J. Mater. Sci. Mater. Electron. 23(6), 1143–1150 (2011)Google Scholar
  25. 25.
    J. Wu, T. Li, T. Qi, Q. Qin, G. Li, B. Zhu, R. Wu, C. Xie, Electron. Mater. 41(7), 1970–1977 (2012)CrossRefGoogle Scholar
  26. 26.
    S.Y. Chu, T.M. Yan, S.L. Chen, Ceram. Int. 26(7), 733–737 (2000)CrossRefGoogle Scholar
  27. 27.
    M.I. Mendelson, J. Am. Ceram. Soc. 55, 109–111 (1972)CrossRefGoogle Scholar
  28. 28.
    T. Hanada, Basic Properties of ZnO. Series: Advances in Materials Research, vol. 12 (Springer, Berlin, 2009)Google Scholar
  29. 29.
    P.R. Bueno, S.A. Pianaro, E.C. Pereira, L.O.S. Bulhões, E. Longo, J.A. Varela, J. Appl. Phys. 84, 3700 (1998)CrossRefGoogle Scholar
  30. 30.
    S. Pattanayak, R.N.P. Choudhary, P. Das, J. Electron. Mater. 43(2), 470–478 (2014)CrossRefGoogle Scholar
  31. 31.
    R.N.P. Choudhary, B. Pati, P.R. Das, R.R. Dash, A. Paul, J. Electron. Mater. 42, 769 (2013)CrossRefGoogle Scholar
  32. 32.
    A.R. West, D.C. Sinclair, N. Hirose, J. Electroceram. 1, 65 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Ceramic Engineering, Indian Institute of TechnologyBanaras Hindu UniversityVaranasiIndia

Personalised recommendations