Synthesis and characterization of uniform spherical shape nanoparticles of indium oxide



Spherical shape nanoparticles of indium oxide (In2O3) has been synthesized by simple and cost effective sol gel method with indium nitrate hydrate as a precursor. The nanoparticles were characterized by X-ray diffraction, Fourier transform infra red spectroscopy (FTIR) and transmission electron microscopy (TEM). Morphological observations showed a uniform size distribution of spherical particles. From TEM, spherical particles size was found to vary from 17 to 23 nm. The most number of the nanoparticles out of total were 17 nm in size. The absorption spectra in ultraviolet region of In2O3 showed optical band gap of 3.6 eV. FTIR study reveals that the nanoparticles are single phase cubic structure of In2O3. Photo-luminescence spectrum at room temperature showed peak at 347 nm in ultraviolet region.


High Resolution Transmission Electron Microscope In2O3 High Resolution Transmission Electron Microscope Indium Oxide Nitrate Hydrate 



S. C. Kulkarni thanks University Grant Commission (UGC) for awarding teacher fellowship under Faculty Improvement Program (F.I.P.). Authors acknowledge P. K. Khanna, Nanoscience Laboratory, C-MET, Pune for his valuable co-operation during synthesis.


  1. 1.
    S.C. Kulkarni, D.S. Patil, Sens. Lett. 13, 294 (2015)CrossRefGoogle Scholar
  2. 2.
    M. Ivanovskaya, A. Gurlo, P. Bogdanov, Sens. Actuators B 77, 264 (2001)CrossRefGoogle Scholar
  3. 3.
    S.C. Kulkarni, C.S. Aher, R.Y. Borse, B.G. Bharate, S.S. Al-Deyab, S.G. Ansari, P.K. Khanna, Adv. Sci. Lett. 5, 109 (2012)CrossRefGoogle Scholar
  4. 4.
    P.P. George, A. Gedanken, Eur. J. Inorg. Chem. 6, 919 (2008)CrossRefGoogle Scholar
  5. 5.
    E.C.C. Souza, J.F.Q. Rey, E.N.S. Muccillo, Appl. Surf. Sci. 255, 3779 (2009)CrossRefGoogle Scholar
  6. 6.
    A. Gurlo, M. Ivanovskya, A. Pfau, U. Weimer, W. Gopel, Thin Solid Films 307, 288 (1997)CrossRefGoogle Scholar
  7. 7.
    J.M. Kim, J.K. Park, K.N. Kim, C.H. Kim, H.G. Jang, Curr. Appl. Phys. 6S1, e198 (2006)CrossRefGoogle Scholar
  8. 8.
    G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinna, M. Niederberger, Sens. Actuator B 127, 455 (2007)CrossRefGoogle Scholar
  9. 9.
    Y. Zhanga, H. Agoa, J. Liub, M. Yumuraa, K. Uchidaa, S. Ohshimaa, S. Iijimaa, J. Zhub, X. Zhang, J. Cryst. Growth 264, 363 (2004)CrossRefGoogle Scholar
  10. 10.
    R. Garkova, G. Volksch, C. Russel, J. Non-Cryst, Solids 352, 5265 (2006)Google Scholar
  11. 11.
    Z. Yuan, J. Zhang, G. Liu, Int. J. Electrochem. Sci. 8, 1794 (2013)Google Scholar
  12. 12.
    A. Askarinejad, M. Iranpour, N. Bahramifar, A. Morsali, J. Exp. Nanosci. 5, 294 (2010)CrossRefGoogle Scholar
  13. 13.
    J. Zhang, J. Hu, Z.Q. Zhu, H. Gong, S.J. O’Shea, Colloids Surf. A 236, 23 (2004)CrossRefGoogle Scholar
  14. 14.
    J. Yang, C. Lin, Z. Wang, J. Lin, Inorg. Chem. 45, 8973 (2006)CrossRefGoogle Scholar
  15. 15.
    S. Park, H. Ko, S. An, W. Lee, S. Lee, C. Lee, Ceram. Int. 39, 5255–5262 (2013)CrossRefGoogle Scholar
  16. 16.
    S.Y. Istomin, E.V. Antipov, Y.S. Fedotov, S.I. Bredikhin, N.V. Lyskov, S. Shafeie, G. Svensson, Y. Liu, Z. Shen, J. Solid State Electrochem. 18, 1415–1423 (2014)CrossRefGoogle Scholar
  17. 17.
    F. Li, J. Jian, W. Rong, J. Li, Y. Sun, J. Alloys Compd. 645, 178–183 (2015)CrossRefGoogle Scholar
  18. 18.
    R.B.H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, J. Appl. Phys. 82, 865 (1997)CrossRefGoogle Scholar
  19. 19.
    K. Omri, I. Najeh, R. Dhahri, J. El Ghoul, L. El Mir, Microelectron. Eng. 128, 53 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Aziz, S.S. Abbas, W.R.W. Baharom, Mater. Lett. 91, 31–34 (2013)CrossRefGoogle Scholar
  21. 21.
    A. Karami, J. Iran. Chem. Soc. 7, s154–s160 (2010)CrossRefGoogle Scholar
  22. 22.
    K. Omri, J. El Ghoul, O.M. Lemine, M. Bououdina, B. Zhang, L. El Mir, Superlattices Microstruct. 60, 139 (2013)CrossRefGoogle Scholar
  23. 23.
    E. Ziegler, A. Heinrich, H. Oppermann, G. Stover, Phys. Status Solidi A 66, 635 (1981)CrossRefGoogle Scholar
  24. 24.
    M.I. Ivanovskaya, E.A. Ovodok, D.A. Kotsikau, Glass Phys. Chem. 37, 560 (2011)CrossRefGoogle Scholar
  25. 25.
    S.K. Poznyak, A.N. Golubev, A.I. Kulak, Surf. Sci. 454, 396 (2000)CrossRefGoogle Scholar
  26. 26.
    J.W. Robinson, Practical Handbook of Spectroscopy (CRC Press, Florida, 2000), p. 533Google Scholar
  27. 27.
    J. Chandradass, K.S. Han, D. Sik Bae, J. Mater. Sci. Technol. 206, 315 (2008)CrossRefGoogle Scholar
  28. 28.
    V.N. Singh, B.R. Mehta, Jpn. J. Appl. Phys. 42, 4226 (2003)CrossRefGoogle Scholar
  29. 29.
    A. Mondal, S. Ram, Ceram. Int. 30, 239 (2004)CrossRefGoogle Scholar
  30. 30.
    M. Seetha, S. Bharathi, A.D. Raj, D. Mangalaraj, D. Nataraj, Mater. Charact. 60, 1578 (2009)CrossRefGoogle Scholar
  31. 31.
    J.S. Jeong, J.Y. Lee, C.J. Lee, S.J. An, G.-C. Yi, Chem. Phys. Lett. 384, 246 (2004)CrossRefGoogle Scholar
  32. 32.
    Q. Tang, W. Zhou, W. Zhang, S. Ou, K. Jiang, W. Yu, Y. Qian, Cryst. Growth Des. 5, 147 (2005)CrossRefGoogle Scholar
  33. 33.
    Y. Zhang, J. Li, Q. Li, L. Zhu, X. Liu, X. Zhong, J. Meng, X. Cao, Scr. Mater. 56, 409 (2007)CrossRefGoogle Scholar
  34. 34.
    M.S. Lee, W.C. Choi, E.K. Kim, C.K. Kim, S.K. Min, Thin Solid Films 279, 1 (1996)CrossRefGoogle Scholar
  35. 35.
    J. Zhang, X. Qing, F. Jiang, Z. Dai, Chem. Phys. Lett. 371, 311 (2003)CrossRefGoogle Scholar
  36. 36.
    C.H. Liang, G.W. Meng, Y. Lei, F. Phillipp, L.D. Zhang, Adv. Mater. 13, 1330 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of ElectronicsNorth Maharashtra UniversityJalgaonIndia

Personalised recommendations