Low temperature chip on film bonding technology for 20 µm pitch applications

  • Sun-Chul Kim
  • Young-Ho Kim


We developed a low temperature and low cost chip on film (COF) bonding technology using Sn/Cu bumps and nonconductive adhesives (NCAs) for 20 µm pitch applications. 20 µm pitch Sn/Cu bumps were formed by electroplating and reflowing. COF bonding was performed at 150 °C for 10 s using a thermo-compression bonder after dispensing the NCA. Three different commercial NCAs were applied during bonding. The electrical properties of the COF joints were evaluated by measuring the contact resistance of each joint by using the four-point probe method. All COF joints were successfully bonded and the average contact resistance of each joint was approximately 7 mΩ, regardless of the type of NCA. To evaluate the reliability of the COF joints, a thermal cycling test (−55/125 °C, 1000 cycles) and a temperature and humidity test (70 °C/95 % RH, 1000 h) were performed. The contact resistance measurement showed that there were no failed bumps in any of the specimens and all of the joints passed the criterion after reliability testing. In the COF joints, metallurgical bonding was formed between the Sn/Cu bumps and Cu pads. This metallurgical bond provided strong and stable contact between the Sn/Cu bumps and Cu pads in the reliability tests.


Contact Resistance Bonding Process Metallurgical Bond Anisotropic Conductive Film Bump Height 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported through a Grant (10051605) from the Ministry of Trade, Industry & Energy, Republic of Korea. Also, special thanks to Myung-Hwan Hong and Ji-Hyun Lee who supported this study.


  1. 1.
    C. Jang, S. Han, J. Ryu, S. Cho, H. Kim, IEEE Trans. Adv. Packag. 30, 2–10 (2007)CrossRefGoogle Scholar
  2. 2.
    C.I. Chen, C.Y. Ni, C.M. Chang, S.C. Wu, D.S. Liu, IEEE Trans. Electron. Packag. Manuf. 31, 285–290 (2008)CrossRefGoogle Scholar
  3. 3.
    S.M. Chang, J.H. Jou, A. Hsieh, T.H. Chen, C.Y. Chang, Y.H. Wang, C.M. Huang, Microelectron. Reliab. 41, 2001–2009 (2001)CrossRefGoogle Scholar
  4. 4.
    M.J. Yim, J.S. Hwang, J.G. Kim, J.Y. Ahn, H.J. Kim, W. Kwon, K.W. Paik, J. Electron. Mater. 33, 76–82 (2004)CrossRefGoogle Scholar
  5. 5.
    M.J. Yim, K.W. Paik, IEEE Trans. Compon. Packag. Manuf. Technol. Part A 21, 226–234 (1998)CrossRefGoogle Scholar
  6. 6.
    S.T. Lu, Y.M. Lin, C.C. Chuang, T.H. Chen, W.H. Chen, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 33–42 (2011)CrossRefGoogle Scholar
  7. 7.
    M.J. Yim, J. Hwang, K.W. Paik, Int. J. Adhes. Adhes. 27, 77–84 (2007)CrossRefGoogle Scholar
  8. 8.
    Y.W. Chiu, Y.C. Chan, S.M. Lui, Microelectron. Reliab. 42, 1945–1951 (2002)CrossRefGoogle Scholar
  9. 9.
    J.H. Kim, I.S. Kang, C.J. Song, Y.J. Hur, H.N. Kim, E. Baek, T.J. Seo, Microelectron. Reliab. 44, 155–161 (2004)CrossRefGoogle Scholar
  10. 10.
    T.A. Min, S.P.S. Lim, A. Yeo, C. Lee, in Proceedings of 7th Electronics Packaging Technology Conference (2005), pp. 797–801Google Scholar
  11. 11.
    L.K. Teh, C.C. Wong, S. Mhaisalkar, K. Ong, P.S. Teo, E.H. Wong, J. Electron. Mater. 33, 271–276 (2004)CrossRefGoogle Scholar
  12. 12.
    Y.K. Lee, Y.H. Ko, J.K. Kim, C.W. Lee, S. Yoo, Electron. Mater. Lett. 9, 31–39 (2013)CrossRefGoogle Scholar
  13. 13.
    K.M. Harr, Y.M. Kim, D.H. Lim, Y.H. Kim, J.G. Kim, S. Yi, in Proceedings of Electronic Components and Technology Conference (2009), pp. 1475–1478Google Scholar
  14. 14.
    K.M. Harr, S.C. Kim, Y.M. Kim, Y.H. Kim, Microelectron. Reliab. 55, 1241–1247 (2015)CrossRefGoogle Scholar
  15. 15.
    S.C. Kim, Y.H. Kim, in Proceedings of Electronic Components and Technology Conference (2013), pp. 785–789Google Scholar
  16. 16.
    B.G. Kim, S.M. Lee, Y.S. Jo, S.C. Kim, K.M. Harr, Y.H. Kim, Microelectron. Reliab. 51, 851–859 (2011)CrossRefGoogle Scholar
  17. 17.
    Y. Shimote, T. Iwasaki, M. Watanabe, S. Baba, M. Kimura, in Proceedings of International Conference on Electronics Packaging, (2014) pp. 608–611Google Scholar
  18. 18.
    C.F. Chan, W.T. Tseng, H.N. Huang, P. Huang, M.H. Chan, C.T. Lin, M. Liu, C.H. Chiu, S. Chiu, M. Ma, in Proceedings of Electronic Packaging Technology Conference (2011), pp. 329–332Google Scholar
  19. 19.
    K.W. Jang, W.S. Kwon, M.J. Yim, K.W. Paik, IEEE Trans. Compon. Packag. Technol. 27, 608–615 (2004)CrossRefGoogle Scholar
  20. 20.
    K.N. Tu, R.D. Thompson, Acta Metall. Mater. 30, 947–952 (1982)CrossRefGoogle Scholar
  21. 21.
    S. Kumar, C.A. Handwerker, M.A. Dayananda, J. Phase Equilib. Diffus. 32, 309–319 (2011)CrossRefGoogle Scholar
  22. 22.
    D. Farley, A. Dasgupta, J.F.J. Caers, J. Adhes. Sci. Technol. 22, 1757–1780 (2008)CrossRefGoogle Scholar
  23. 23.
    Z.G. Chen, Y.H. Kim, Displays 27, 130–135 (2006)CrossRefGoogle Scholar
  24. 24.
    S.M. Lee, B.G. Kim, Y.H. Kim, Mater. Trans. 49, 2100–2106 (2008)CrossRefGoogle Scholar
  25. 25.
    J.S. Hwang, Microelectron. Reliab. 48, 645–651 (2008)CrossRefGoogle Scholar
  26. 26.
    S.C. Kim, Y.H. Kim, Curr. Appl. Phys. 13, S14–S25 (2013)CrossRefGoogle Scholar
  27. 27.
    B.G. Kim, S.C. Kim, W.G. Dong, Y.H. Kim, Mater. Trans. 52, 2106–2110 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of Materials Science and EngineeringHanyang UniversitySeoulSouth Korea

Personalised recommendations