Advertisement

CdSe quantum dot/AlOx based non-volatile resistive memory

  • V. Kannan
  • Hyun-Seok Kim
  • Hyun-Chang Park
Article
  • 157 Downloads

Abstract

We present an all-solution processed bipolar non-volatile resistive memory device with CdSe quantum dot/metal–metal oxide/quantum dot structure. The two terminal device exhibits excellent switching characteristics with ON/OFF ratio >104. The device maintained its state even after removal of the bias voltage. The switching time is around 14 ns. Device did not show degradation after 4000 s retention test. The memory functionality was consistent even after multiple cycles of operation (100,000) and the device is reproducible. The switching mechanism is discussed on the basis of charge trapping in quantum dots with metal oxide serving as the barrier. The mechanism is supported by observation of variation in capacitance–frequency measurements.

Keywords

Switching Time Switching Characteristic Charge Trapping Thin Metal Layer Resistive Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2014R1A1A2058814).

References

  1. 1.
    R. Waser, M. Aono, Nat. Mater. 6, 833 (2007)CrossRefGoogle Scholar
  2. 2.
    G.I. Meijer, Science 319, 1625 (2008)CrossRefGoogle Scholar
  3. 3.
    Y.C. Yang, F. Pan, Q. Liu, M. Liu, F. Zeng, Nano Lett. 9, 1636 (2009)CrossRefGoogle Scholar
  4. 4.
    S.H. Jo, W. Lu, Nano Lett. 8, 392 (2008)CrossRefGoogle Scholar
  5. 5.
    H. Silva, H.L. Gomes, Yu.G. Pogorelov, P. Stallinga, D.M. de Leeuw, P. Araujo, J.B. Sousa, S.C.J. Meskers, G. Kakazei, S. Cardoso, P.P. Freitas, Appl. Phys. Lett. 94, 202107 (2009)CrossRefGoogle Scholar
  6. 6.
    Y. Yang, J. Ouyang, L. Ma, R.J. Tseng, C.-W. Chu, Adv. Funct. Mater. 16, 1001 (2006)CrossRefGoogle Scholar
  7. 7.
    J.-G. Park, W.-S. Nam, S.-H. Seo, Y.-G. Kim, Y.-H. Oh, G.-S. Lee, U.-G. Paik, Nano Lett. 9, 1713 (2009)CrossRefGoogle Scholar
  8. 8.
    L.P. Ma, J. Liu, Y. Yang, Appl. Phys. Lett. 80, 2997 (2002)CrossRefGoogle Scholar
  9. 9.
    J.C. Scott, L.D. Bozano, Adv. Mater. 19, 1452 (2007)CrossRefGoogle Scholar
  10. 10.
    L.D. Bozano, B.W. Kean, V.R. Deline, J.R. Salem, J.C. Scott, Appl. Phys. Lett. 84, 607 (2004)CrossRefGoogle Scholar
  11. 11.
    I. Amlani, A.O. Orlov, G. Toth, G.H. Bernstein, C.S. Lent, G.L. Snider, Science 284, 289 (1999)CrossRefGoogle Scholar
  12. 12.
    S. Ma, Z. Chen, H. Sun, N.K. Dutta, Opt. Express 18, 6417 (2010)CrossRefGoogle Scholar
  13. 13.
    S.A. Ng, K.A. Razak, K.Y. Cheong, K.C. Aw, J. Mater. Sci. Mater. Electron. 26, 6484 (2015)CrossRefGoogle Scholar
  14. 14.
    M.D. Fischbein, M. Drndic, Appl. Phys. Lett. 86, 193106 (2005)CrossRefGoogle Scholar
  15. 15.
    H. Pettersson, L. Baath, N. Carlsson, W. Seifert, L. Samuelson, Appl. Phys. Lett. 79, 78 (2001)CrossRefGoogle Scholar
  16. 16.
    E.S. Kannan, G.-H. Kim, D.A. Ritchie, Appl. Phys. Lett. 95, 143506 (2009)CrossRefGoogle Scholar
  17. 17.
    M. Geller, A. Marent, T. Nowozin, D. Bimberg, N. Akçay, N. Öncan, Appl. Phys. Lett. 92, 092108 (2008)CrossRefGoogle Scholar
  18. 18.
    A. Marent, M. Geller, A. Schliwa, D. Reise, K. Potschke, D. Bimberg, N. Akcay, N. Oncan, Appl. Phys. Lett. 91, 242109 (2007)CrossRefGoogle Scholar
  19. 19.
    V. Kannan, J.K. Rhee, Appl. Phys. Lett. 99, 143504 (2011)CrossRefGoogle Scholar
  20. 20.
    V. Kannan, J.K. Rhee, J. Appl. Phys. 110, 074505 (2011)CrossRefGoogle Scholar
  21. 21.
    V. Kannan, J.K. Rhee, Phys. Chem. Chem. Phys. 15, 12762 (2013)CrossRefGoogle Scholar
  22. 22.
    L. Jdira, P. Liljeroth, E. Stoffels, D. Vanmaekelbergh, S. Speller, Phys. Rev. B 73, 115305 (2006)CrossRefGoogle Scholar
  23. 23.
    Y. Jo, B.U. Jang, J. Kim, D. Kim, H. Woo, I. Kim, W. Park, H. Im, H. Kim, J. Korean Phys. Soc. 64, 173 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Millimeter-wave INnovation Technology Research Center (MINT)Dongguk UniversitySeoulRepublic of Korea
  2. 2.Division of Electronics and Electrical EngineeringDongguk UniversitySeoulRepublic of Korea

Personalised recommendations