Temperature dependent growth of cadmium(II) oxide nanocrystals: studies on morphology based optical, electrical and dielectric properties



Nanocrystalline cadmium(II) oxide were obtained by calcining a hydrated cadmium-organic hybrid precursor, (C10H2O8)Cd2·xH2O, obtained by a chemical reduction method using cadmium acetate dihydrate, 1,2,4,5-benzenetetracarboxylic acid, and triethylamine. Calcined CdO at different temperature possess different morphology, revealed by field emission scanning electron microscope analysis. In this article, the photosensitivity, dielectric behavior, frequency dependant loss-tangent and complex impedance spectra of the morphology driven CdO nanoparticles were studied aptly.


Acetate Dihydrate Chemical Reduction Method Conditional Temperature Complex Impedance Spectrum Field Emission Scanning Electron Microscopic Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



S. Shit gratefully acknowledges University Grants Commission, New Delhi, India for financial assistance [Minor Research Project No. F. PSW-65/12-13 (ERO)]. Authors acknowledge the Department of Physics, Jadavpur University, Kolkata, India for technical support.


  1. 1.
    T. Trindade, P. O’Brien, N.L. Pickett, Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem. Mater. 13, 3843–3858 (2001)CrossRefGoogle Scholar
  2. 2.
    A. Thiaville, J. Miltat, Small is beautiful. Science 284, 1939–1940 (1999)CrossRefGoogle Scholar
  3. 3.
    T. Aswani, B. Babu, V.P. Manjari, R.J. Stella, G.T. Rao, C.R. Krishna, R.V.S.S.N. Ravikumar, Synthesis and spectral characterizations of trivalent ions (Cr3+, Fe3+) doped CdO nanopowders. Spectrochim. Acta 121A, 544–550 (2014)CrossRefGoogle Scholar
  4. 4.
    K. Kaviyarasu, E. Manikandan, P. Paulraj, S.B. Mohamed, J. Kennedy, One dimensional well-aligned CdO nanocrystal by solvothermal method. J. Alloys Comp. 593, 67–70 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Gulino, G. Compagnini, A. Scalisi, Large third-order nonlinear optical properties of cadmium oxide thin films. Chem. Mater. 15, 3332–3336 (2003)CrossRefGoogle Scholar
  6. 6.
    P. Gadenne, Y. Yagil, G. Deutscher, Transmittance and reflectance in situ measurements of semicontinuous gold film during deposition. J. Appl. Phys. 66, 3019–3025 (1989)CrossRefGoogle Scholar
  7. 7.
    P. Yang, C.M. Lieber, Nanorod-superconductor composites: a pathway to materials with high critical current densities. Science 273, 1836–1840 (1996)CrossRefGoogle Scholar
  8. 8.
    R.J. Bandaranayake, G.W. Wen, J.Y. Lin, H.X. Jiang, C.M. Sorensen, Structural phase behavior in II–VI semiconductor nanoparticles. Appl. Phys. Lett. 67, 831–833 (1995)CrossRefGoogle Scholar
  9. 9.
    F. Yakuphanoglu, M. Caglar, Y. Caglar, S. Ilican, Electrical characterization of nanocluster n-CdO/p-Si heterojunction diode. J. Alloys Comp. 506, 188–193 (2010)CrossRefGoogle Scholar
  10. 10.
    M. Aksoy, C. Aydin, F. Yakuphanoglu, I.S. Yahia, Nanopowder synthesis of aluminum doped cadmium oxide via sol–gel calcination processing. J. Alloys. Compd. 509, 854–858 (2011)CrossRefGoogle Scholar
  11. 11.
    R. Vinodkumar, K.J. Lethy, P.R. Arunkumar, R. Krishnan, N. Venugopalan Pillai, V.P. Mahadevan Pillai, Effect of cadmium oxide incorporation on the microstructural and optical properties of pulsed laser deposited nanostructured zinc oxide thin. Mater. Chem. Phys. 121, 406–413 (2010)CrossRefGoogle Scholar
  12. 12.
    A.V. Moholkar, G.L. Agawane, K.-U. Sim, Y.-B. Kwon, K.Y. Rajpure, J.H. Kim, Influence of deposition temperature on morphological, optical, electrical and opto-electrical properties of highly textured nano-crystalline spray deposited CdO: Ga thin films. Appl. Surf. Sci. 257, 93–101 (2010)CrossRefGoogle Scholar
  13. 13.
    R.K. Gupta, K. Ghosh, R. Patel, P.K. Kahol, Low temperature processed highly conducting, transparent, and wide bandgap Gd doped CdO thin films for transparent electronics. J. Alloys Comp. 509, 4146–4149 (2011)CrossRefGoogle Scholar
  14. 14.
    M.H. Kim, Y.-U. Kwon, Semiconductor CdO as a blocking layer material on DSSC electrode: mechanism and application. J. Phys. Chem. C 113, 17176–17182 (2009)CrossRefGoogle Scholar
  15. 15.
    H. Zhou, T. Fan, D. Zhang, Hydrothermal synthesis of ZnO hollow spheres using spherobacterium as biotemplates. Microporous Mesoporous Mater. 100, 322–327 (2007)CrossRefGoogle Scholar
  16. 16.
    H.B. Lu, L. Liao, H. Li, Y. Tian, D.F. Wang, J.C. Li, Q. Fu, B.P. Zhu, Y. Wu, Fabrication of CdO nanotubes via simple thermal evaporation. Mater. Lett. 62, 3928–3930 (2008)CrossRefGoogle Scholar
  17. 17.
    D.S. Dhawale, A.M. More, S.S. Latthe, K.Y. Rajpure, C.D. Lokhande, Room temperature synthesis and characterization of CdO nanowires by chemical bath deposition (CBD) method. Appl. Surf. Sci. 254, 3269–3273 (2008)CrossRefGoogle Scholar
  18. 18.
    Y.C. Zhang, G.L. Wang, Solvothermal synthesis of CdO hollow nanostructures from CdO2 nanoparticles. Mater. Lett. 62, 673–675 (2008)CrossRefGoogle Scholar
  19. 19.
    S.H. Tolbert, A.P. Alivisatos, The Wurtzite to rock-salt structural transformation in CdSe nanocrystals under high pressure. J. Chem. Phys. 102, 4642–4656 (1995)CrossRefGoogle Scholar
  20. 20.
    N. Herron, Y. Wang, H. Eckert, Synthesis and characterization of surface-capped, size-quantized CdS clusters. Chemical control of cluster size. J. Am. Chem. Soc. 112, 1322–1326 (1990)CrossRefGoogle Scholar
  21. 21.
    G. Chiu, E.J. Meehan, The preparation of monodisperse lead sulfide sols. J. Colloid Interface Sci. 49, 160–161 (1974)CrossRefGoogle Scholar
  22. 22.
    P.P. Sharmila, R.M. Sebastain, S. Sagar, E.M. Mohammed, N.J. Tharayil, Dielectric properties and conductivity of (ZnO/CdO) mixed oxide nanocomposite. Ferroelectrics 474, 144–155 (2015)CrossRefGoogle Scholar
  23. 23.
    V. Safarifard, A. Morsali, Sonochemical syntheses of a nanoparticles cadmium(II) supramolecule as a precursor for the synthesis of cadmium(II) oxide nanoparticles. Ultrason. Sonochem. 19, 1227–1233 (2012)CrossRefGoogle Scholar
  24. 24.
    M. Ramazani, A. Morsali, Sonochemical syntheses of a new nano-plate cadmium(II) coordination polymer as a precursor for the synthesis of cadmium(II) oxide. Ultrason. Sonochem. 18, 1160–1164 (2011)CrossRefGoogle Scholar
  25. 25.
    A. Mehrani, A. Morsali, Synthesis and crystal structures of mercury(II) and cadmium(II) coordination compounds using 4′-(4-pyridyl)-2,2′:6′,2′-terpyridine ligand and their thermolysis to nanometal oxides. J. Mol. Struct. 2014, 596–601 (1074)Google Scholar
  26. 26.
    S. Geranmayeh, A. Abbasi, Simultaneous growing of two new Cd(II) metal-organic frameworks with 2,6-Naphthalendicarboxylic acid as new precursors for cadmium(II) oxide nanoparticles: thermal, topology and structural studies. J. Inorg. Organomet. Polym. 23, 1138–1144 (2013)CrossRefGoogle Scholar
  27. 27.
    M. Payehghadr, V. Safarifard, M. Ramazani, A. Morsali, Preparation of cadmium(II) oxide nanoparticles from a new one-dimensional cadmium(II) coordination polymer precursor; spectroscopic and thermal analysis studies. J. Inorg. Organomet. Polym. 22, 543–548 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Shit, T. Kamilya, P.K. Samanta, A novel chemical reduction method of growing ZnO nanocrystals and their optical property. Mater. Lett. 114, 123–125 (2014)CrossRefGoogle Scholar
  29. 29.
    D.M. Yufanyi, J.F. Tendo, A.M. Ondoh, J.K. Mbadcam, CdO nanoparticles by thermal decomposition of a Cd-hexamethylenetetramine complex. J. Mater. Sci. Res. 3, 1–11 (2014)Google Scholar
  30. 30.
    A. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2, 154–160 (2012)CrossRefGoogle Scholar
  31. 31.
    J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8–10, 569–585 (1972)CrossRefGoogle Scholar
  32. 32.
    Y. Abdollahi, A.H. Abdullah, Z. Zainal, N.A. Yusof, Synthesis and characterization of manganese doped ZnO nanoparticle. Int. J. Basic Appl. Sci. 11, 44–50 (2011)Google Scholar
  33. 33.
    P. Chakraborty, G. Datta, K. Ghatak, A simple theoretical analysis of the effective electron mass in heavily doped III–V semiconductors in the presence of band-tails. Phys. Scr. 68, 368–377 (2003)CrossRefGoogle Scholar
  34. 34.
    J.C. Maxwell, Electricity and Magnetism (Oxford University Press, London, 1973)Google Scholar
  35. 35.
    K.W. Wagner, Dissipation of energy under AC. Ann. Phys. 40, 817–855 (1913)CrossRefGoogle Scholar
  36. 36.
    O.S. Panwar, M. Radhakrishana, K.K. Srivastava, Electrical and dielectric properties of As10Ge15Te75Agx glasses. Philos. Mag. B 41, 253–271 (1980)CrossRefGoogle Scholar
  37. 37.
    A. Layek, A. Dey, J. Datta, M. Das, P.P. Ray, Novel CuFeS2 pellet behaves like a portable signal transporting network: studies of immittance. RSC Adv. 5, 34682–34689 (2015)CrossRefGoogle Scholar
  38. 38.
    H.M. Chenari, A. Hassanzadeh, M.M. Golzan, H. Sedghi, M. Talebian, Frequency dependence of ultrahigh dielectric constant of novel synthesized SnO2 nanoparticles thick films. Curr. Appl. Phys. 11, 409–413 (2011)CrossRefGoogle Scholar
  39. 39.
    B.H. Venkataraman, K.B.R. Varma, Frequency-dependent dielectric characteristics of ferroelectric SrBi2Nb2O9 ceramics. Solid State Ion. 167, 197–202 (2004)CrossRefGoogle Scholar
  40. 40.
    D. Ravinder, G. Ranga Mohan, N. Prankishan, D.R. Sagar, High frequency dielectric behaviour of aluminium-substituted lithium ferrites. Mater. Lett. 44, 256–260 (2000)CrossRefGoogle Scholar
  41. 41.
    G.B. Kumar, S. Buddhudu, Optical, thermal and dielectric properties of Bi4(TiO4)3 ceramic powders. Ceram. Int. 36, 1857–1861 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of ChemistryJalpaiguri Government Engineering CollegeJalpaiguriIndia
  2. 2.Department of PhysicsBejoy Narayan MahavidyalayaItachuna, HooghlyIndia

Personalised recommendations