Role of strain and lattice distortion on ferroelectric and piezoelectric properties of bismuth magnesium zirconate substituted sodium bismuth titanate ceramics

  • D. E. Jain Ruth
  • B. Sundarakannan


Effect of weak ferroelectric perovskite, bismuth magnesium zirconate [Bi(Mg0.5Zr0.5)O3] substitution in lead-free sodium bismuth titanate [(Na0.5Bi0.5)TiO3] ceramics is studied. Influence of substitution on intrinsic and extrinsic contribution and impact on ferroelectric and piezoelectric properties are investigated. Improved spontaneous polarization (Ps), increased remnant polarization (Pr), decreased coercive field (Ec) and high piezoelectric coefficient (d33) are obtained for x = 0.01 mole fraction of Bi(Mg0.5Zr0.5)O3 substitution due to decrease in rhombohedral lattice distortion and homogeneous strain. Small rhombohedral lattice distortion (δr) and minimum homogeneous strain (δ) are the primary intrinsic parameters which favours the extrinsic parameters such as mobility of non-180° domain reorientation, domain switching and domain wall motion. Enhanced mobility softens the coercive field and increases remnant polarization to maximum. Reduced rhombohedral lattice distortion, low strain and enhanced mobility are the key factors for enhanced piezoelectric constant, highest remnant polarization and decreased coercive field in non-MPB (1 − x)(Na0.5Bi0.5)TiO3xBi(Mg0.5Zr0.5)O3 solid solutions.


Piezoelectric Property Coercive Field Piezoelectric Coefficient Remnant Polarization Domain Switching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the Council of Scientific and Industrial Research, New Delhi, India funding agency for the financial support under the Grant No. 03/(1238)/12/EMR-II.


  1. 1.
    J. Rodel, W. Jo, K.T.P. Seifert, E. Anon, T. Granzow, J. Am. Ceram. Soc. 92, 1153 (2009)CrossRefGoogle Scholar
  2. 2.
    G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)CrossRefGoogle Scholar
  3. 3.
    P.K. Panda, J. Mater. Sci. 44, 5049 (2009)CrossRefGoogle Scholar
  4. 4.
    M. Demartin Maeder, D. Damjanovic, N. Setter, J. Electroceram. 13, 385 (2004)CrossRefGoogle Scholar
  5. 5.
    S.O. Leontsev, R.E. Eitel, Sci. Technol. Adv. Mater. 11, 044302 (2010)CrossRefGoogle Scholar
  6. 6.
    E. Aksel, J.L. Jones, Sensors 10, 1935 (2010)CrossRefGoogle Scholar
  7. 7.
    T.R. Shrout, S.J. Zhang, J. Electroceram. 19, 111 (2007)CrossRefGoogle Scholar
  8. 8.
    W. Jo, J.E. Daniels, J.L. Jones, X. Tan, P.A. Thomas, D. Damjanovic, J. Rödel, J. Appl. Phys. 109, 014110 (2011)CrossRefGoogle Scholar
  9. 9.
    M. Chen, Q. Xu, B.H. Kim, B.K. Ahn, J.H. Ko, W.J. Kang, O.J. Nam, J. Eur. Ceram. Soc. 28, 843 (2008)CrossRefGoogle Scholar
  10. 10.
    F. Cordero, F. Craciun, F. Trequattrini, E. Mercadelli, C. Galassi, Phys. Rev. B 81, 144124 (2010)CrossRefGoogle Scholar
  11. 11.
    I. Levin, I.M. Reaney, E.M. Anton, W. Jo, J. Rodel, J. Pokorny, L.A. Schmitt, H.J. Kleebe, M. Hinterstein, J.L. Jones, Phys. Rev. B 87, 024113 (2013)CrossRefGoogle Scholar
  12. 12.
    A. Moosavi, M.A. Bahrevar, A.R. Aghaei, P. Ramos, M. Alguero, H. Amorın, J. Phys. D Appl. Phys. 47, 055304 (2014)CrossRefGoogle Scholar
  13. 13.
    D. Rout, K.-S. Moon, S.-J.L. Kang, I.W. Kim, J. Appl. Phys. 108, 084102 (2010)CrossRefGoogle Scholar
  14. 14.
    Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, T. Takenaka, Appl. Phys. Lett. 92, 262904 (2008)CrossRefGoogle Scholar
  15. 15.
    S. Kuharungrong, W. Schulze, J. Am. Ceram. Soc. 79(5), 1273–1280 (1996)CrossRefGoogle Scholar
  16. 16.
    J.-K. Lee, K.S. Hong, C.K. Kim, S.-E. Park, J. Appl. Phys. 91, 4538 (2002)CrossRefGoogle Scholar
  17. 17.
    G. Fan, W. Lu, X. Wang, F. Liang, J. Xiao, J. Phys. D Appl. Phys. 41, 035403 (2008)CrossRefGoogle Scholar
  18. 18.
    Yu. Huichun, Z.-G. Ye, Appl. Phys. Lett. 93, 112902 (2008)CrossRefGoogle Scholar
  19. 19.
    L. Eric Cross, Ferroelectric Ceramics, Monte Verita (Birkhiiuser Verlag, Basel, 1993), pp. 1–84Google Scholar
  20. 20.
    W. Heywang, K. Lubitz, W. Wersing, Piezoelectricity Evolution and Future of a Technology, Springer Series in Materials Science (Springer, Berlin, 2008), p. 96Google Scholar
  21. 21.
    B.J. Chu, D.R. Chen, G.R. Li, Q.R. Yin, J. Eur. Ceram. Soc. 22, 2115 (2002)CrossRefGoogle Scholar
  22. 22.
    Y. Watanabe, Y. Hiruma, H. Nagata, T. Takenaka, Ceram. Int. 34, 761764 (2008)CrossRefGoogle Scholar
  23. 23.
    A. Herabut, A. Safari, J. Am. Ceram. Soc. 80(11), 29542958 (1997)CrossRefGoogle Scholar
  24. 24.
    T. Takenaka, H. Nagata, Jpn. J. Appl. Phys. 36(9B), 60556057 (1997)Google Scholar
  25. 25.
    X. Wang, H. Chan, C.L. Choy, J. Am. Ceram. Soc. 86(10), 18091811 (2003)CrossRefGoogle Scholar
  26. 26.
    Y. Li, W. Chen, J. Zhou, Q. Xu, H. Sun, R. Xu, Mater. Sci. Eng., B 112, 59 (2004)CrossRefGoogle Scholar
  27. 27.
    C. Zhou, X. Liu, J. Mater. Sci. 43, 10161019 (2008)Google Scholar
  28. 28.
    C. Zhou, X. Liu, J. Mater. Sci.: Mater. Electron. 19, 29–32 (2008)Google Scholar
  29. 29.
    Q. Wang, J. Chen, L. Fan, L. Liu, L. Fang, X. Xing, J. Am. Ceram. Soc. 96, 1171 (2013)CrossRefGoogle Scholar
  30. 30.
    A. Ullah, M. Ishfaq, C.W. Ahn, A. Ullah, S.E. Awan, I.W. Kim, Ceram. Int. 41, 10557 (2015)CrossRefGoogle Scholar
  31. 31.
    Y. Hiruma, K. Yoshii, H. Nagata, T. Takenaka, J. Appl. Phys. 103, 084121 (2008)CrossRefGoogle Scholar
  32. 32.
    A. Maqbool, J. Rahman, A. Hussain, J.K. Park, T.G. Park, J.S. Song, M.H. Kim, IOP Conf. Ser. Mater. Sci. Eng. B 60, 012047 (2014)Google Scholar
  33. 33.
    D.E. Jain Ruth, M. Veera Gajendra Babu, S.M. Abdul Kader, B. Bagyalakshmi, D. Pathinettam Pandiyan, B. Sundarakannan, J. Mater. Sci.: Mater. Electron. 26, 6757–6761 (2015)Google Scholar
  34. 34.
    D.E. Jain Ruth, S.M. Abdul Kader, M. Muneeswaran, N.V. Giridharan, D. Pathinettam Pandiyan, B. Sundarakannan, J. Mater. Sci.: Mater. Electron. (2015). doi: 10.1007/s10854-015-3768-7 Google Scholar
  35. 35.
    J. Chen, J. Li, L. Fan, N. Zou, P. Gi et al., J. Appl. Phys. 112, 074101 (2012)CrossRefGoogle Scholar
  36. 36.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751 (1976)CrossRefGoogle Scholar
  37. 37.
    I. Grinberg, M.R. Suchomel, P.K. Davies, A.M. Rappe, J. Appl. Phys. 98, 094111 (2005)CrossRefGoogle Scholar
  38. 38.
    G.O. Jones, P.A. Thomas, Acta Cryst. B58, 168–178 (2002)CrossRefGoogle Scholar
  39. 39.
    T. Hahn, International Tables for Crystallography Volume A: Space-Group Symmetry, 5th edn. (Springer, Berlin, 2005), p. 16Google Scholar
  40. 40.
    B.N. Rao, R. Ranjan, Phys. Rev. B 86, 134103 (2012)CrossRefGoogle Scholar
  41. 41.
    Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, H.H. Chong, T.G. Park, D. Do, S.S. Kim, Appl. Phys. Lett. 96, 022901 (2010)CrossRefGoogle Scholar
  42. 42.
    Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, H.H. Chong, T.G. Park, Appl. Phys. Lett. 96, 202901 (2010)CrossRefGoogle Scholar
  43. 43.
    A.G. Khatchaturyan, Philos. Mag. 90, 37–60 (2010)CrossRefGoogle Scholar
  44. 44.
    J.L. Jones, M. Hoffman, J.E. Daniels, A.J. Studer, Appl. Phys. Lett. 89, 092901 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PhysicsManonmaniam Sundaranar UniversityTirunelveliIndia

Personalised recommendations