Advertisement

New multilayer arrangement of dielectric layers for enhancement of the magnetic shielding absorption at low frequency in the near field

  • Zoubir Nedjem
  • Tahar Seghier
  • Abdelchafik Hadjadj
Article
  • 224 Downloads

Abstract

This paper presents a new multilayer arrangement structure based on the dielectric polymer, which allows an effective absorption of magnetic wave radiation, and a selective reflection of desired wavelengths of the shield composite in the low frequency range that is not widely used in general cases. This is caused by the impedance mismatch between conductive films and air, and between conductive films and dielectric polymer layer. The structure is built from alternating conductive films and dielectric polymer layers, in a way that dielectric polymer layers are sandwiched between conductive films symmetrically in both directions. The simulation results of both the absorption and the total shielding effectiveness from the developing analytical model are in good agreement with experimental characterization, and could be further extended to the design of systems operating in other frequency ranges.

Keywords

Dielectric Layer Conductive Layer Reflection Loss Multiple Reflection Conductive Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Z. Qu, S. Liu, Q. Wang, Y. Wang, Y. Lei, Electromagnetic shielding properties of multilayered composites containing multiple inclusions with various spatial distributions. Mater. Lett. 109, 42–45 (2013)CrossRefGoogle Scholar
  2. 2.
    A. Frikha, M. Bensetti, F. Duval, N. Benjelloun, F. Lafon, L. Pichon, A new methodology to predict the magnetic shielding effectiveness of enclosures at low frequency in the near field. IEEE Trans. Magn. 51(3), 1–4 (2015)CrossRefGoogle Scholar
  3. 3.
    J. Huo, L. Wang, H. Yu, Polymeric nanocomposites for electromagnetic wave absorption. J. Mater. Sci. 44, 3917–3927 (2009)CrossRefGoogle Scholar
  4. 4.
    M. Najim, P. Smitha, V. Agarwala, D. Singh, Design of light weight multi-layered coating of zinc oxide-iron-graphite nano-composites for ultra-wide bandwidth microwave absorption. J. Mater. Sci. Mater. Electron. 26, 7367–7377 (2015)CrossRefGoogle Scholar
  5. 5.
    E. Tan, Y. Kagawa, A.F. Dericioglu, Electromagnetic wave absorption potential of SiC-based ceramic woven fabrics in the GHz range. J. Mater. Sci. 44, 1172–1179 (2009)CrossRefGoogle Scholar
  6. 6.
    Y. Danlée, C. Bailly, I. Huynen, Thin and flexible multilayer polymer composite structures for effective control of microwave electromagnetic absorption. Compos. Sci. Technol. 100, 182–188 (2014)CrossRefGoogle Scholar
  7. 7.
    Y. Danlée, I. Huynen, C. Bailly, Frequency-selective multilayer electromagnetic bandgap structure combining carbon nanotubes with polymeric or ceramic substrates. Appl. Phy. Lett. 105, 123118 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Wang, D. Zhu, W. Zhou, F. Luo, Synthesis and microwave absorbing properties of Ni–Cu ferrite/ MWCNTs composites. J. Mater. Sci. Mater. Electron. 26, 7698–7704 (2015)CrossRefGoogle Scholar
  9. 9.
    G. Shuchao, D. Yuping, D. Peng, W. Song, Q. Guoping, L. Yuzhe, Investigation of the absorption properties of the alloys Fe–Ni and Fe–Ni–Cr prepared by mechanical alloying. J. Electron. Mater. 44(7), 2331 (2015)CrossRefGoogle Scholar
  10. 10.
    E. Pellicer, A. Varea, K.M. Sivaraman, S. Pané, S. Surinach, M.D. Baró, J. Nogués, B.J. Nelson, J. Sort, Grain boundary segregation and interdiffusion effects in nickel–copper alloys: an effective means to improve the thermal stability of nanocrystalline nickel. ACS Appl. Mater. Interfaces 3, 2265–2274 (2011)CrossRefGoogle Scholar
  11. 11.
    K. Ji, H. Zhao, J. Zhang, J. Chen, Z. Dai, Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs. Appl. Surf. Sci. 311, 351–356 (2014)CrossRefGoogle Scholar
  12. 12.
    G. Shi, W. Li, Y. Lu, Fe-based surface activator for electroless nickel deposition on polyester: application to electromagnetic shielding. Surf. Coat. Technol. 253, 221–226 (2014)CrossRefGoogle Scholar
  13. 13.
    R.R. Bonaldi, E. Siores, T. Shah, Characterization of electromagnetic shielding fabrics obtained from carbon nanotube composite coatings. Synth. Met. 187, 1–8 (2014)CrossRefGoogle Scholar
  14. 14.
    J.M. Thomassin, C. Jérome, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R 74, 211–232 (2013)CrossRefGoogle Scholar
  15. 15.
    M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60, 146–156 (2013)CrossRefGoogle Scholar
  16. 16.
    Y. Liu, D. Song, C. Wu, J. Leng, EMI shielding performance of nanocomposites with MWCNTs, nanosized Fe3O4 and Fe. Compos. B 63, 34–40 (2014)CrossRefGoogle Scholar
  17. 17.
    B. Zhao, G. Shao, B. Fan, W. Zhao, R. Zhang, Enhanced microwave absorption capabilities of Ni microspheres after coating with SnO2 nanoparticles. J. Mater. Sci. Mater. Electron. 26, 5393–5399 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zoubir Nedjem
    • 1
  • Tahar Seghier
    • 1
  • Abdelchafik Hadjadj
    • 2
  1. 1.Laboratoire d’études et de développement des matériaux semi-conducteurs et diélectriquesLaghouatAlgeria
  2. 2.Laboratoire d’Analyse et Commande des Systèmes d’Energie et Réseaux Electriques ‘LACoSERELaghouatAlgeria

Personalised recommendations