Advertisement

Phase transition, leakage conduction mechanism evolution and enhanced ferroelectric properties in multiferroic Mn-doped BiFeO3 thin films

  • Yalong Liu
  • Jie Wei
  • Yang Liu
  • Xiaofei Bai
  • Peng Shi
  • Shengchun Mao
  • Xueqian Zhang
  • Chen Li
  • Brahim Dkhil
Article

Abstract

Pure and Mn-doped BiFeO3 thin films were prepared by a facile chemical solution deposition process. X-ray diffraction patterns and Raman spectra imply a phase transition from a rhombohedral structure in pure BiFeO3 film to a nearly tetragonal structure in Mn-doped BiFeO3 films. Moreover, it is found that doping of Mn could greatly modify the surface morphology, leakage current properties and ferroelectric properties of BiFeO3 films. Consequently, the lowest leakage current density and the largest remnant polarization are observed in BiFe0.925Mn0.075O3 film which could be well explained by the leakage conduction mechanism and its evolution from the space-charge-limited current behavior for BiFeO3 and BiFe0.95Mn0.05O3 films to the Poole–Frenkel emission for BiFe0.925Mn0.075O3 film, as well as completely an Ohmic behavior for BiFe0.90Mn0.10O3 film. Based on the X-ray photoelectron spectroscopy analysis of Mn ions, we argue that the varied valences of Mn ions such as Mn4+, Mn3+ and Mn2+ may play an important role in lowering leakage current density and enhancing the ferroelectric properties of BiFeO3 films.

Keywords

BiFeO3 Ferroelectric Property Leakage Current Density Varied Valence Leakage Conduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Financial support by the National Natural Science Foundation of China (Grant No. 51272204) is gratefully acknowledged. J. Wei, Y. Liu and X. F. Bai wish to thank the China Scholarship Council (CSC) for funding their stay in France.

References

  1. 1.
    G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)CrossRefGoogle Scholar
  2. 2.
    J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, Phys. Rev. B 71, 014113 (2005)CrossRefGoogle Scholar
  3. 3.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)CrossRefGoogle Scholar
  4. 4.
    J.F. Li, J.L. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A.P. Pyatakov, A.K. Zvezdin, D. Viehland, Appl. Phys. Lett. 84, 5261 (2004)CrossRefGoogle Scholar
  5. 5.
    D. Lebeugle, D. Colson, A. Forget, M. Viret, Appl. Phys. Lett. 91, 022907 (2007)CrossRefGoogle Scholar
  6. 6.
    S. Iakovlev, C.H. Solterbeck, M. Kuhnke, M. Es-Souni, J. Appl. Phys. 97, 094901 (2005)CrossRefGoogle Scholar
  7. 7.
    Y.W. Li, J.L. Sun, J. Chen, X.J. Meng, J.H. Chu, J. Cryst. Growth 285, 595 (2005)CrossRefGoogle Scholar
  8. 8.
    A.Z. Simões, A.H.M. Gonzalez, L.S. Cavalcante, C.S. Riccardi, E. Longo, J. Appl. Phys. 101, 074108 (2007)CrossRefGoogle Scholar
  9. 9.
    N.M. Murari, A. Kumar, R. Thomas, R.S. Katiyar, Appl. Phys. Lett. 92, 132904 (2008)CrossRefGoogle Scholar
  10. 10.
    S.K. Singh, K. Maruyama, H. Ishiwara, Appl. Phys. Lett. 91, 112913 (2007)CrossRefGoogle Scholar
  11. 11.
    J. Liu, M.Y. Li, L. Pei, B.F. Yu, D.Y. Guo, X.Z. Zhao, J. Phys. D Appl. Phys. 42, 115409 (2009)CrossRefGoogle Scholar
  12. 12.
    J. Wu, J. Wang, D. Xiao, J. Zhu, A.C.S. Appl, Mater. Interfaces 3, 2504 (2011)CrossRefGoogle Scholar
  13. 13.
    Y. Wang, J. Li, J. Chen, Y. Deng, J. Appl. Phys. 113, 103904 (2013)CrossRefGoogle Scholar
  14. 14.
    E.M. Choi, A. Kursumovic, O.J. Lee, J.E. Kleibeuker, A. Chen, W. Zhang, W.J.L. MacManus-Driscoll, ACS Appl. Mater. Interface 6, 14836 (2014)CrossRefGoogle Scholar
  15. 15.
    D. Kothari, V.R. Reddy, A. Gupta, D.M. Phase, N. Lakshmi, S.K. Deshpande, A.M. Awasthi, J. Phys.: Condens. Matter 19, 136202 (2007)Google Scholar
  16. 16.
    T. Kawae, Y. Teraguchi, M. Kumeda, A. Morimoto, Appl. Phys. Lett. 94, 112904 (2009)CrossRefGoogle Scholar
  17. 17.
    J.Y. Chen, Y. Wang, Y. Deng, J. Appl. Phys. 116, 174102 (2014)CrossRefGoogle Scholar
  18. 18.
    J. Wei, D. Xue, Appl. Surf. Sci. 258, 1373 (2011)CrossRefGoogle Scholar
  19. 19.
    D. Ricinschi, K.Y. Yun, M. Okuyama, J. Phys.: Condens. Matter. 18, L97 (2006)Google Scholar
  20. 20.
    M.N. Iliev, M.V. Abrashev, D. Mazumdar, V. Shelke, A. Gupta, Phys. Rev. B. 82, 014107 (2010)CrossRefGoogle Scholar
  21. 21.
    D. Mazumdar, V. Shelke, M. Iliev, S. Jesse, A. Kumar, S.V. Kalinin, A. Gupta, Nano Lett. 10, 2555 (2010)CrossRefGoogle Scholar
  22. 22.
    A. Kumar, J.F. Scott, R.S. Katiyar, Appl. Phys. Lett. 99, 062504 (2011)CrossRefGoogle Scholar
  23. 23.
    M.H. Lee, J.S. Park, D.J. Kim, H.J. Cho, Y.S. Sung, M.H. Kim, T.K. Song, Current. Appl. Phys. 11, S189 (2011)Google Scholar
  24. 24.
    C. Ederer, N.A. Spaldin, Phys. Rev. Lett. 95, 257601 (2005)CrossRefGoogle Scholar
  25. 25.
    W. Liu, G. Tan, G. Dong, X. Yan, W. Ye, H. Ren, A. Xia, J. Mater. Sci.: Mater. Electron. 25, 723 (2014)Google Scholar
  26. 26.
    H. Yang, M. Jain, N.A. Suvorova, H. Zhou, H.M. Luo, D.M. Feldmann, Q.X. Jia, Appl. Phys. Lett. 91, 072911 (2007)CrossRefGoogle Scholar
  27. 27.
    G.W. Pabst, L.W. Martin, Y.H. Chu, R. Ramesh, Appl. Phys. Lett. 90, 072902 (2007)CrossRefGoogle Scholar
  28. 28.
    M.A. Khan, T.P. Comyn, A.J. Bell, Appl. Phys. Lett. 92, 072908 (2008)CrossRefGoogle Scholar
  29. 29.
    C.J. Peng, S.B. Krupanidhi, J. Mater. Res. 10, 708 (1995)CrossRefGoogle Scholar
  30. 30.
    P. Zubko, D.J. Jung, J.F. Scott, J. Appl. Phys. 100, 114113 (2006)CrossRefGoogle Scholar
  31. 31.
    M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257, 2717 (2011)CrossRefGoogle Scholar
  32. 32.
    X.D. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yalong Liu
    • 1
  • Jie Wei
    • 1
  • Yang Liu
    • 2
  • Xiaofei Bai
    • 2
  • Peng Shi
    • 1
  • Shengchun Mao
    • 1
  • Xueqian Zhang
    • 1
  • Chen Li
    • 1
  • Brahim Dkhil
    • 2
  1. 1.Electronic Materials Research Laboratory, Key Laboratory of EducationXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.Laboratoire Structures, Propriétés et Modélisation des Solides, Centrale Supélec, CNRS-UMR8580Université Paris-SaclayChâtenay-Malabry CedexFrance

Personalised recommendations