Advertisement

A facile method to oxidize p-type Zinc Selenide nanowires into n-type Zinc Oxide nanowires

  • Xiwei Zhang
  • Zhenjie Tang
  • Dan Hu
  • Zhi Wang
  • Fengjun Yu
  • Haitao Cui
  • Tongshuai Xu
  • Lin Ju
Article
  • 192 Downloads

Abstract

A facile method was used to oxidize p-type Zinc Selenide (ZnSe) nanowires into n-type Zinc Oxide (ZnO) through a 700 °C annealing process in air. Single crystal ZnSe nanowires, with a hole concentration of 0.805 × 1018 cm−3 and a negative photoconductivity, were oxidized into polycrystalline ZnO nanowires with an electron concentration of 4.88 × 1018 cm−3 and a positive photoconductivity. Additionally, both the as-synthesized ZnSe nanowires and the post-oxidized ZnO nanowires presented excellent optoelectronic properties. This method can be used to construct radial p–n junctions or other nano-devices based on a single NW through a regioselective oxidation process.

Keywords

ZnSe ZnSe Nanowires Single Crystal ZnSe Negative Photoconductivity BiZn 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 51402004), Program for New Century Excellent Talents in University (NCET-11-0937) and the Science and Technology Development Project of the Henan province (Nos. 142102210380, 142300410366, 152102210293 and 15A510006).

References

  1. 1.
    C.Y. Wu, J.S. Jie, L. Wang, Y.Q. Yu, Q.A. Peng, X.W. Zhang, J.J. Cai, H.E. Guo, D. Wu, Y. Jiang, Nanotechnology 21, 505203 (2010)CrossRefGoogle Scholar
  2. 2.
    Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, Adv. Mater. 15, 353 (2003)CrossRefGoogle Scholar
  3. 3.
    H. Yan, H.S. Choe, S.W. Nam, Y. Hu, S. Das, J.F. Klemic, J.C. Ellenbogen, C.M. Lieber, Nature 470, 240 (2011)CrossRefGoogle Scholar
  4. 4.
    X.P. Yang, Z.W. Qiu, X. Li, J.G. Lu, B.Q. Cao, Appl. Phys. Express 6, 125201 (2013)CrossRefGoogle Scholar
  5. 5.
    A.I. Hochbaum, P.D. Yang, Chem. Rev. 110, 527 (2010)CrossRefGoogle Scholar
  6. 6.
    S. Arya, S. Khan, P. Lehana, I. Gupta, S. Kumar, J. Mater. Sci. Mater. Electron. 25, 4150 (2014)CrossRefGoogle Scholar
  7. 7.
    D. Wu, Y. Jiang, L. Wang, S.Y. Li, B. Wu, X.Z. Lan, Y.Q. Yu, C.Y. Wu, Z.B. Wang, J.S. Jie, Appl. Phys. Lett. 96, 123118 (2010)CrossRefGoogle Scholar
  8. 8.
    Y. Jiang, W.J. Zhang, J.S. Jie, X.M. Meng, X. Fan, S.T. Lee, Adv. Funct. Mater. 17, 1795 (2007)CrossRefGoogle Scholar
  9. 9.
    J.M. Bao, M.A. Zimmler, F. Capasso, Nano Lett. 6, 1719–1722 (2006)CrossRefGoogle Scholar
  10. 10.
    P. Li, Q.L. Liao, Z. Zhang, Y. Zhang, Y.H. Huang, S.W. Ma, Appl. Phys. Express 5, 061101 (2012)CrossRefGoogle Scholar
  11. 11.
    B.Z. Tian, X.L. Zheng, T.J. Kempa, Y. Fang, N.F. Yu, G.H. Yu, J.L. Huang, C.M. Lieber, Nature 449, 885 (2007)CrossRefGoogle Scholar
  12. 12.
    A. Javey, J. Guo, Q. Wang, M. Lundstrom, H.J. Dai, Nature 424, 654 (2003)CrossRefGoogle Scholar
  13. 13.
    E. Nannen, T. Kümmell, A. Ebbers, G. Bacher, Appl. Phys. Express 5, 035001 (2012)CrossRefGoogle Scholar
  14. 14.
    X.W. Zhang, Y.M. Wu, L. Wang, X.J. Zhang, Y. Wang, P. Gao, Y.Y. Han, J.S. Jie, Nanotechnology 24, 395201 (2013)CrossRefGoogle Scholar
  15. 15.
    G.M. Lohar, H.D. Dhaygude, R.A. Patil, J. Mater. Sci. Mater. Electron. 26, 8904 (2015)CrossRefGoogle Scholar
  16. 16.
    B. Nie, L.B. Luo, J.J. Chen, J.G. Hu, C.Y. Wu, L. Wang, Y.Q. Yu, Z.F. Zhu, J.S. Jie, Nanotechnology 24, 095603 (2013)CrossRefGoogle Scholar
  17. 17.
    N.T. Nguyen, S.G. Ri, T. Nagata, K. Ishibashi, K. Takahashi, Y. Tsunekawa, S. Suzuki, T. Chikyow, Appl. Phys. Express 7, 062102 (2014)CrossRefGoogle Scholar
  18. 18.
    J.S. Jie, W.J. Zhang, I. Bello, C.S. Lee, S.T. Lee, Nano Today 5, 313 (2010)CrossRefGoogle Scholar
  19. 19.
    K. Yadav, Y. Dwivedi, N. Jaggi, J. Mater. Sci. Mater. Electron. 26, 2198 (2015)CrossRefGoogle Scholar
  20. 20.
    X.W. Zhang, J.S. Jie, Z. Wang, C.Y. Wu, L. Wang, Q. Peng, Y.Q. Yu, P. Jiang, C. Xie, J. Mater. Chem. 21, 6736–6741 (2011)CrossRefGoogle Scholar
  21. 21.
    S. Limpijumnong, S.B. Zhang, S.H. Wei, C.H. Park, Phys. Rev. Lett. 92, 155504 (2004)CrossRefGoogle Scholar
  22. 22.
    U. Wah, E. Rita, J.G. Correia, A.C. Marques, E. Alves, J.C. Soares, Phys. Rev. Lett. 95, 215503 (2005)CrossRefGoogle Scholar
  23. 23.
    R.J. Chen, N.R. Franklin, J. Kong, J. Cao, T.W. Tombler, Y.G. Zhang, Appl. Phys. Lett. 79, 2258 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xiwei Zhang
    • 1
  • Zhenjie Tang
    • 1
  • Dan Hu
    • 1
  • Zhi Wang
    • 1
  • Fengjun Yu
    • 1
  • Haitao Cui
    • 1
  • Tongshuai Xu
    • 1
  • Lin Ju
    • 1
  1. 1.College of Physics and Electrical EngineeringAnyang Normal UniversityAnyangPeople’s Republic of China

Personalised recommendations