Influence of gadolinium precursor on the enhanced red shift of Gd/SnO2–TiO2 nanoparticles and catalytic activity

  • Muhammad Akhyar Farrukh
  • Maryam Shahid
  • Iqra Muneer
  • Shaghraf Javaid
  • Muhammad Khaleeq-ur-Rahman


Gd/SnO2–TiO2 nanoparticles were synthesized by using ultrasonic and hydrothermal methods. Effect of concentration of gadolinium (Gd) precursor on particle size and activity of nanoparticles was studied. It was observed that the particle size increases with the increase in concentration of gadolinium precursor. Gd/SnO2–TiO2 nanoparticles were characterized by TEM, SEM, EDX, TGA, FTIR and powder XRD. Band gap calculation was done by using Solid Phase Spectrophotometer to determine the optical properties of nanoparticles. The effect of concentration of Gd on band gap was investigated and red shift was observed for Gd/SnO2–TiO2 from 5.3 to 2.0 eV. Photocatalytic degradation of Methylene Blue was carried out to determine the catalytic properties of Gd/SnO2–TiO2. It was found that Gd/SnO2–TiO2 nanoparticles prepared with 0.004 M concentration of Gd precursor degraded the dye more effectively as compared to the samples prepared with 0.005 and 0.006 M concentrations of Gd.


TiO2 SnO2 Photocatalytic Activity Methylene Blue TiO2 Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by The Word Academy of Sciences (TWAS) through Research Grant 11-028 RG/MSN/AS_C and Higher Education Commission (HEC) Pakistan under Grant Number 20-2660/NRPU/R&D/HEC/13.


  1. 1.
    D. Yu, J. Bai, H. Liang, J. Wang, C. Li, Appl. Surf. Sci. 349, 241–250 (2015)CrossRefGoogle Scholar
  2. 2.
    H. Perveen, M.A. Farrukh, M. Khaleeq-ur-Rahman, B. Munir, M.A. Tahir, Russ. J. Phys. Chem. A 89, 99–107 (2015)CrossRefGoogle Scholar
  3. 3.
    S. Javaid, M.A. Farrukh, I. Muneer, M. Shahid, M. Khaleeq-ur-Rahman, A.A. Umar, Superlattice. Microst. 82, 234–247 (2015)CrossRefGoogle Scholar
  4. 4.
    J.C. Manifacier, M.D. Murcia, J.P. Fillard, E. Vicario, Thin Solid Films 41, 127–144 (1997)CrossRefGoogle Scholar
  5. 5.
    K. Reddy, S. Manorama, A. Redd, Mater. Chem. Phys. 78, 239–245 (2002)CrossRefGoogle Scholar
  6. 6.
    I. Jing, S. Li, L. Xue, H. Fu, Solar Energy Mater. Solar Cell 92, 1030–1036 (2008)CrossRefGoogle Scholar
  7. 7.
    G. Wang, J. Mol. Catal. A Chem. 274, 185–191 (2007)CrossRefGoogle Scholar
  8. 8.
    S. Sahni, B. Reddy, B. Murty, Mater. Sci. Eng. A 452–453, 758–762 (2007)CrossRefGoogle Scholar
  9. 9.
    M. Francisco, V. Mastelaro, Chem. Mater. 14(6), 2514–2518 (2002)CrossRefGoogle Scholar
  10. 10.
    A. Welte, C. Waldauf, P. Wellmann, Thin Solid Films 516, 7256–7259 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Yuan, Q. Sheng, J. Zhang, F. Chen, M. Anpo, Q. Zhang, Micropor. Mesopor. Mat. 79, 93–99 (2005)CrossRefGoogle Scholar
  12. 12.
    A. Beltra, J. Andres, J.R. Sambrano, E. Longo, J. Phys. Chem. A 112, 8943–8952 (2008)CrossRefGoogle Scholar
  13. 13.
    F. Labat, P. Baranek, C. Adamo, J. Chem. Theory Comput. 4, 341–352 (2008)CrossRefGoogle Scholar
  14. 14.
    K. Rekha, M. Nirmala, G. Manjula, Anukaliani, J. Phys. Condens. Matter 405(15), 3180–3185 (2010)Google Scholar
  15. 15.
    K. Ellmer, R. Cebulla, R. Wendt, Thin Solid Films 317, 413–416 (1994)CrossRefGoogle Scholar
  16. 16.
    H. Ennen, Appl. Phys. Lett. 43, 943 (1983)CrossRefGoogle Scholar
  17. 17.
    C. Wen, H. Deng, J. Tian, J. Zhang, T. Nonferr, Metals Soc. 16, 728–731 (2006)Google Scholar
  18. 18.
    Y. Feng, Y. Cui, B. Logan, Z. Liu, Chemosphere 70, 1629–1636 (2008)CrossRefGoogle Scholar
  19. 19.
    S. Sivasankaran, S. Sankaranarayanan, S. Ramakrishnan, Mater. Sci. Forum 754, 89–97 (2013)CrossRefGoogle Scholar
  20. 20.
    M. Ashokkumar, F. Grieser, Chem. Eng. Rev. 15, 41–83 (1999)CrossRefGoogle Scholar
  21. 21.
    L.A.P. Maqueda, F. Franco, M.A. Aviles, J. Poyato, J.L.P. Rodriguez, Clays. Clay. Mine. 51, 701–708 (2003)CrossRefGoogle Scholar
  22. 22.
    M.B. Malekshahi, A.K. Nemati, L. Fatholahi, Z.B. Malekshahi, JNS 3, 1–9 (2013)CrossRefGoogle Scholar
  23. 23.
    L.L. Schramm, E.N. Stasiuk, D.G. Marangoni, Annu. R. Prog. Chem. 99, 3–48 (2003)CrossRefGoogle Scholar
  24. 24.
    A. Phuruangrat, O. Yayapao, T. Thongtem, S. Thongtem, Superlattice. Microstruct. 67, 118–126 (2013)CrossRefGoogle Scholar
  25. 25.
    A. Phuruangrat, O. Yayapao, T. Thongtem, S. Thongtem, J. Nanomater. 2014, 367529 (2014)Google Scholar
  26. 26.
    S. Mattson, A. Pugh, J. Soil Sci. 38, 229 (1934)Google Scholar
  27. 27.
    M.A. Farrukh, B.T. Heng, R. Adnan, Turk. J. Chem. 34, 537–550 (2010)Google Scholar
  28. 28.
    A.A. Belheker, S.V. Awate, R. Anand, Control Catal. Commun. 3, 453–458 (2002)CrossRefGoogle Scholar
  29. 29.
    E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, N.K. Allam, Superlattice Microst. 76, 339–348 (2014)CrossRefGoogle Scholar
  30. 30.
    M.A. Farrukh, P. Tan, R. Adnan, Turk. J. Chem. 36, 303–314 (2012)Google Scholar
  31. 31.
    B. Grzmil, M. Rabe, B. Kic, K. Lubkowski, Ind. Eng. Chem. Res. 4, 46 (2007)Google Scholar
  32. 32.
    G. Magesh, G. Viswanathan, R.P. Viswanath, T.K. Varadarajan, Ind. J. Chem. 48, 480–488 (2009)Google Scholar
  33. 33.
    Q. Xiao, Z. Si, Z. Yu, G. Qui, Mater. Sci. Eng. B 137, 189–194 (2007)CrossRefGoogle Scholar
  34. 34.
    I. Muneer, M.A. Farrukh, S. Javaid, M. Shahid, M. Khaleeq-ur-Rahman, Superlattice Microst. 77, 256–266 (2015)CrossRefGoogle Scholar
  35. 35.
    G. Mi, C. Yu, L. Xiao, Chem. Res 27(3), 350–353 (2011)Google Scholar
  36. 36.
    K.C. Song, Y. Kang, Mater. Lett. 42, 283–289 (2000)CrossRefGoogle Scholar
  37. 37.
    A. Imtiaz, M. A. Farrukh, M. Khaleeq-Ur-Rahman, R. Adnan, Sci. World J. 2013, 641420 (2013)CrossRefGoogle Scholar
  38. 38.
    E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, A.S. Mohamed, N.K. Allam, J. Electroanal. Chem. 735, 129–135 (2014)CrossRefGoogle Scholar
  39. 39.
    N.K. Sahoo, S. Thakar, M. Senthikumar, D. Bhattacharyya, N.C. Das, Thin Solid Films 440, 155–168 (2005)CrossRefGoogle Scholar
  40. 40.
    M.A. Farrukh, C.-K. Thong, R. Adnan, M.A. Kamarulzaman, Russ. J. Phys. Chem. A 86, 2041–2048 (2012)CrossRefGoogle Scholar
  41. 41.
    H. Yazid, R. Adnan, M.A. Farrukh, S.A. Hamid, J. Chin. Chem. Soc. 58, 593–601 (2011)CrossRefGoogle Scholar
  42. 42.
    B. Huang, C. Zhao, M. Zhang, Z. Zhang, E. Xie, J. Zhou, W. Han, Appl. Surf. Sci. 349, 615–621 (2015)CrossRefGoogle Scholar
  43. 43.
    W. Dong, F. Pan, L. Xu, M. Zheng, C.H. Sow, K. Wu, G.Q. Xu, W. Chen, Appl. Surf. Sci. 349, 279–286 (2015)CrossRefGoogle Scholar
  44. 44.
    N.S. Arul, D. Mangalaraj, T.W. Kim, Appl. Surf. Sci. 349, 459–464 (2015)CrossRefGoogle Scholar
  45. 45.
    R. Adnan, N.A. Razana, I.A. Rehman, M.A. Farrukh, J. Chin. Chem. Soc. 57, 222–229 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Muhammad Akhyar Farrukh
    • 1
  • Maryam Shahid
    • 1
  • Iqra Muneer
    • 1
  • Shaghraf Javaid
    • 1
  • Muhammad Khaleeq-ur-Rahman
    • 2
  1. 1.Nano-Chemistry LaboratoryGC University LahoreLahorePakistan
  2. 2.Center of Excellence in Solid State PhysicsUniversity of the PunjabLahorePakistan

Personalised recommendations