Effect of sulfur on dielectric properties of Cd–Se Glassy system



Cd4Se96−xSx with x = 0, 4, 8, 12 amorphous semiconductor has been prepared by melt-quenching technique. Bulk samples in the form of powder were characterized by XRD which shows the amorphous nature of the prepared samples. The dielectric parameters were studied in the temperature range of 300–350 K and in the frequency range of 20 Hz–1 MHz. Dielectric dispersion are observed in the Cd–Se–S system, these results are explained on the basis of dipolar type of dielectric dispersion. It is also observed that DC conductivity increases and activation energy decrease with increase of sulfur concentration, which is mainly due to increase in the density of localized state in the mobility gap or decrease in the band gap.


Dielectric Constant Dielectric Loss Sulfur Concentration Defect State Dielectric Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am highly thankful to the University Grants Commission (UGC), New Delhi (India) for providing me financial support in the form of Basic Scientific research (BSR) scholarship.


  1. 1.
    A. Ozols, D. Saharovs, M. Reinfelde, J. Non Cryst. Solids 352, 2652 (2006)CrossRefGoogle Scholar
  2. 2.
    S. Raoux, M. Wuttig, Phase Change Materials: Science and Applications (Springer, Berlin, 2009), p. 175CrossRefGoogle Scholar
  3. 3.
    A. Zakery, S.R. Elliott, J. Non Cryst. Solids 330, 1–12 (2003)CrossRefGoogle Scholar
  4. 4.
    N.A. Hegab, M.A. Afifi, H.E. Atyia, A.S. Farid, J. Alloys Compd. 477, 925 (2009)CrossRefGoogle Scholar
  5. 5.
    M.A. Majeed Khan, M. Zulfequar, M. Husain, Phys. B 366, 1–10 (2005)CrossRefGoogle Scholar
  6. 6.
    M.A. Majeed Khan, M. Zulfequar, M. Husain, J. Phys. Chem. Solids 62(6), 1093–1101 (2001)CrossRefGoogle Scholar
  7. 7.
    P.P. Hankare et al., J. Mater. Sci. Mater. Electron. 17, 1055–1063 (2006)CrossRefGoogle Scholar
  8. 8.
    H.-J. Zhan et al., J. Lumin. 132, 2769–2774 (2012)CrossRefGoogle Scholar
  9. 9.
    J. Díaz-Reyes et al., Mat. Sci. Semicon. Proc. 37, 199–206 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Muthukumaran, M. Muthusamy, J. Mater. Sci. Mater. Electron. 23, 1647–1656 (2012)CrossRefGoogle Scholar
  11. 11.
    P.A. Chate, D.J. Sathe, P.P. Hankare, J. Mater. Sci. Mater. Electron. 22, 111–115 (2011)CrossRefGoogle Scholar
  12. 12.
    I.B. Amara, R. Bennaceur, S. Jaziri, H.B. Abdallah, Mater. Sci. Semicond. Process. 31, 56–67 (2015)CrossRefGoogle Scholar
  13. 13.
    H.M. Saad, S. El-Sayed, G.A. Amin, K.K. Tahoon, M.A. El-Rahman, Mater. Sci. Semicond. Process. 12, 193–197 (2009)CrossRefGoogle Scholar
  14. 14.
    K.F.A. El-Rahman, A.A.A. Darwish, E.A.A. El-Shazly, Mater. Sci. Semicond. Process. 25, 123–129 (2014)CrossRefGoogle Scholar
  15. 15.
    I.S. Ram et al., J. Alloys Compd. 552, 480–485 (2013)CrossRefGoogle Scholar
  16. 16.
    S.S. Fouad, A.E. Bekheet, A.M. Farid, Phys. B 322, 163 (2002)CrossRefGoogle Scholar
  17. 17.
    S.R. Elliott, Philos. Mag. 36, 1291 (1977)CrossRefGoogle Scholar
  18. 18.
    M. Ilyas, M. Zulfequar, Z.H. Khan, M. Husain, Phys. B 254, 57 (1998)CrossRefGoogle Scholar
  19. 19.
    M. Ilyas, M. Zulfequar, M. Husain, Phys. B 271, 125 (1999)CrossRefGoogle Scholar
  20. 20.
    P. Pollak, G.E. Pike, Phys. Rev. Lett. 25, 1449 (1972)CrossRefGoogle Scholar
  21. 21.
    N. Choudhary, A. Kumar, Ind. J. Eng. Mater. Sci. 11, 55 (2004)Google Scholar
  22. 22.
    K.K. Srivasatava, A. Kumar, O.S. Panwar, J. Non-Cryst. Solids 33, 4205 (1979)Google Scholar
  23. 23.
    B. Tareev, Physics of Dielectric Materials (Mir Publishers, Moscow, 1975), p. 67Google Scholar
  24. 24.
    A.M. Farid, H.E. Atyia, N.A. Hegab, Vacuum 80, 284 (2005)CrossRefGoogle Scholar
  25. 25.
    J.C. Giuntini, J.V. Zandieha, J. Non-Cryst. Solids 34, 57 (1979)CrossRefGoogle Scholar
  26. 26.
    J.C. Guintini, J.V. Zanchetta, D. Jullen, R. Eholle, P. Hoenou, J. Non-Cryst. Solids 45, 57 (1981)CrossRefGoogle Scholar
  27. 27.
    S.R. Elliott, Adv. Phys. 36, 135 (1987)CrossRefGoogle Scholar
  28. 28.
    P. Debye, The Chemical Cataloge Company (Polar Molecule, New York, 1929). (chapter 5) Google Scholar
  29. 29.
    N.F. Mott, E.A. Davis, Electronic Process in Non-crystalline Materials (Clarendon, Oxford, 1979), p. 428Google Scholar
  30. 30.
    R. Arora, A. Kumar, J. Mater. Sci. Lett. 9, 348 (1990)CrossRefGoogle Scholar
  31. 31.
    M. Zulfequar, A. Kumar, J. Electrochem. Soc. 136, 1099 (1989)CrossRefGoogle Scholar
  32. 32.
    M. Zulfequar, A. Kumar, Adv. Ceram. Matter. 3, 332 (1988)CrossRefGoogle Scholar
  33. 33.
    T.M. Stevels, Handbuch der Physik, in The Electrical Properties of Glasses, ed. by Flugged (Springer, Berlin, 1957)Google Scholar
  34. 34.
    I.S. Yahia, N.A. Hagab, A.M. Shakra, A.M. AL-Ribaty, Phys. B 407, 2476–2485 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of PhysicsJamia Millia IslamiaNew DelhiIndia
  2. 2.Department of PhysicsKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations