Enhanced magnetic and dielectric properties of Bi0.7Y0.2Ba0.1Fe0.98−xCoxO3 ceramic with Co3+ substitution

  • Qiang Li
  • Shengxiang Bao
  • Yuanxun Li
  • Yulan Jing
  • Jie Li


In this paper, we prepared the Co substituted Bi0.7Y0.2Ba0.1Fe0.98−xCoxO3 (x = 0.00, 0.02, 0.04, 0.06) ceramic materials by conventional solid-state reaction method. In order to further enhance the magnetic properties, we chose Co3+ ions to substitute Fe3+ ions in Bi0.7Y0.2Ba0.1Fe0.98O3 ceramic materials. Phase formation, dielectric and magnetic properties of the samples were investigated by X-ray diffractometer, scanning electron microscope, impedance analysis and vibrating sample magnetometer. The results indicated that Co3+ ion substitution could cause the lattice distortion, but did not change the phase formation of samples. With Co3+ increasing from 0.00 to 0.06, the saturation magnetization (M s) increased by 24 % (from 7.81 to 9.68 emu/g), the coercivity (H c) increased by 50 % (from 110.56 to 166.68 Oe). With the increasing of Co substitute amount, the real part of dielectric permittivity (ε′) firstly increased by 71 % to reach 58.56 and then decreased by 4 % to reach 56.26, and kept stable value in a wild frequency range of 10 MHz–1 GHz.


Co2O3 Saturation Magnetization Dielectric Permittivity BiFeO3 Solid State Reaction Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the Financial support by the Open Foundation of National Engineering Research Center of Electromagnetic Radiation Control Materials (ZYGX2014K003-8), and by the National Nature Science Foundation of China (Nos. 61271038 and 51472042).


  1. 1.
    G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)CrossRefGoogle Scholar
  2. 2.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)CrossRefGoogle Scholar
  3. 3.
    Y. Wan, Y. Li, Y. Guo, Q. Zheng, X. Wu, C. Xu et al., Structure, ferroelectric, piezoelectric and ferromagnetic properties of BiFeO3–Ba0.6(Bi0.5K0.5)0.4TiO3 lead-free multiferroic ceramics. J. Mater. Sci. Mater. Electron. 25, 1534–1541 (2014)CrossRefGoogle Scholar
  4. 4.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)CrossRefGoogle Scholar
  5. 5.
    S. Pattanayak, R.N.P. Choudhary, D. Pattanayak, A comparative study of structural, electrical and magnetic properties rare-earth (Dy and Nd)-modified BiFeO3. J. Mater. Sci. Mater. Electron. 25, 3854–3861 (2014)CrossRefGoogle Scholar
  6. 6.
    Y. Han, W. Mao, C. Quan, X. Wang, J. Yang, T. Yang et al., Enhancement of magnetic and ferroelectric properties of BiFeO3 by Er and transition element (Mn, Co) co-doping. Mater. Sci. Eng., B 188, 26–30 (2014)CrossRefGoogle Scholar
  7. 7.
    Y. Guo, P. Xiao, L. Luo, N. Jiang, F. Lei, Q. Zheng et al., Structure, ferroelectric and piezoelectric properties of Bi0.5(Na0.8K0.2)0.5TiO3 modified BiFeO3–BaTiO3 lead-free piezoelectric ceramics. J. Mater. Sci. Mater. Electron. 25, 3753–3761 (2014)CrossRefGoogle Scholar
  8. 8.
    X.J. Xi, S.Y. Wang, W.F. Liu, H.J. Wang, F. Guo, X. Wang et al., Enhanced magnetic and conductive properties of Ba and Co co-doped BiFeO3 ceramics. J. Magn. Magn. Mater. 355, 259–264 (2014)CrossRefGoogle Scholar
  9. 9.
    J. Xu, D. Xie, C. Yin, T. Feng, X. Zhang, G. Li et al., Enhanced dielectric and multiferroic properties of single-phase Y and Zr co-doped BiFeO3 ceramics. J. Appl. Phys. 114, 154103 (2013)CrossRefGoogle Scholar
  10. 10.
    W.-S. Kim, Y.-K. Jun, K.H. Kim, S.-H. Hong, Enhanced magnetization in Co and Ta-substituted BiFeO3 ceramics. J. Magn. Magn. Mater. 321, 3262–3265 (2009)CrossRefGoogle Scholar
  11. 11.
    Y.K. Jun, S.H. Hong, Dielectric and magnetic properties in Co- and Nb-substituted BiFeO3 ceramics. Solid State Commun. 144, 329–333 (2007)CrossRefGoogle Scholar
  12. 12.
    V.R. Palkar, K. Prashanthi, M. Mandal, Effect of thermal stress on magnetic domain patterns of multiferroic Bi1-xDyxFeO3 thin films. Mater. Lett. 64, 1455–1457 (2010)CrossRefGoogle Scholar
  13. 13.
    K. Chakrabarti, B. Sarkar, V.D. Ashok, S.S. Chaudhuri, S.K. De, Enhanced magnetic and dielectric behavior in Co doped BiFeO3 nanoparticles. J. Magn. Magn. Mater. 381, 271–277 (2015)CrossRefGoogle Scholar
  14. 14.
    P. Godara, A. Agarwal, N. Ahlawat, S. Sanghi, R. Dahiya, Crystal structure transformation, dielectric and magnetic properties of Ba and Co modified BiFeO3 multiferroic. J. Alloy. Compd. 594, 175–181 (2014)CrossRefGoogle Scholar
  15. 15.
    W.W. Mao, X.F. Wang, Y.M. Han, X.A. Li, Y.T. Li, Y.F. Wang et al., Effect of Ln (Ln = La, Pr) and Co co-doped on the magnetic and ferroelectric properties of BiFeO3 nanoparticles. J. Alloy. Compd. 584, 520–523 (2014)CrossRefGoogle Scholar
  16. 16.
    M.B. Bellakki, V. Manivannan, C. Madhu, A. Sundaresan, Synthesis and magnetic properties of BiFeO3 and Bi0.98Y0.02FeO3. Mater. Chem. Phys. 116, 599–602 (2009)CrossRefGoogle Scholar
  17. 17.
    C. Ederer, N.A. Spaldin, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B. 71, 060401 (2005)CrossRefGoogle Scholar
  18. 18.
    L. Feng-Jin, C. Shui-Yuan, H. Zhi-Gao, Effects of Ba-doping and process conditions on the structure and magnetic properties of BiFeO3 ceramics. Acta Phys. Sin. 63, 085101 (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Qiang Li
    • 1
  • Shengxiang Bao
    • 1
  • Yuanxun Li
    • 1
  • Yulan Jing
    • 1
  • Jie Li
    • 1
    • 2
  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.National Engineering Research Center of Electromagnetic Radiation Control MaterialsUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations