Photoelectrochemical water splitting performance of flower like ZnO nanostructures synthesized by a novel chemical method

  • Subramaniam Sohila
  • Ramesh Rajendran
  • Zahira Yaakob
  • Mohd Asri Mat Teridi
  • Kamaruzzaman Sopian


A flower like ZnO nanostructures are synthesized using by a novel chemical method without using any precipitating agent. Structural, morphological and optical properties are studied using powder XRD, FE-SEM, TEM and UV–Vis. spectroscopy measurements. The synthesized flower like ZnO nanostructures are in single hexagonal wurtzite phase with good crystalline nature. The average size of the flower like ZnO nanostructures is 50 nm visualized from FESEM images, which composed of 5 nm ZnO spherical nanoparticles. The formation mechanism for a flower like ZnO nanostructures are discussed in detail. Optical absorption spectrum of ZnO nanoflower showed a band gap of 3.25 eV. Photoelectrochemical water splitting performance is evaluated by current density measurement for different applied voltage. The improved photocurrent density is shown as 0.39 mA/cm at 0.6 V versus Ag/AgCl under simulated solar irradiation.


Zinc Acetate FESEM Image Simulated Solar Radiation Photoelectrochemical Water Splitting Maximum Photocurrent Density 



This project is financed by Universiti Kebangsaan Malaysia under Grant DIP-2014-011 and FRGS/2/2013/ST01/UKM/01/1.


  1. 1.
    R. Abe, J. Photochem. Photobiol. C Photochem. Rev. 4, 179–209 (2010)CrossRefGoogle Scholar
  2. 2.
    A. Fujishima, K. Honda, Nature 238, 37–38 (1972)CrossRefGoogle Scholar
  3. 3.
    A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95, 735–758 (1995)CrossRefGoogle Scholar
  4. 4.
    S. Hernández, D. Hidalgo, A. Sacco, A. Chiodoni, A. Lamberti, A. Cauda, E. Tressoab, G. Saraccob, Phys. Chem. Chem. Phys. 17, 7775–7786 (2015)CrossRefGoogle Scholar
  5. 5.
    A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009)CrossRefGoogle Scholar
  6. 6.
    C. Bai, C. Wang, Philos. Trains. R. Soc. A 371, 20130263 (2013)CrossRefGoogle Scholar
  7. 7.
    S. Shet, ECS Trans. 33, 15–25 (2011)CrossRefGoogle Scholar
  8. 8.
    A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Adv. Funct. Mater. 19, 1849–1859 (2009)CrossRefGoogle Scholar
  9. 9.
    H. Chen, Z. Wei, K. Yan, Y. Bai, Z. Zhu, T. Zhang et al., Small 10, 4760–4769 (2014)CrossRefGoogle Scholar
  10. 10.
    M.H. Huang, Y.Y. Wu, H. Feick, N. Tran, E. Weber, P.D. Yang, Adv. Mater. 13, 113–116 (2001)CrossRefGoogle Scholar
  11. 11.
    B.D. Yao, Y.F. Chan, N. Wang, Appl. Phys. Lett. 81, 757 (2002)CrossRefGoogle Scholar
  12. 12.
    W.I. Park, G.C. Yi, M.Y. Kim, S.J. Pennycook, Adv. Mater. 14, 1841–1843 (2002)CrossRefGoogle Scholar
  13. 13.
    T. Prakash, G. Neri, A. Bonavita, E. Ranjith Kumar, K. Gnanamoorthi, J. Mater. Sci. Mater. Electron. 24, 20–26 (2015)Google Scholar
  14. 14.
    A. Ashrafi, C. Jagdish, J. Appl. Phys. 102, 071101-1 (2007)CrossRefGoogle Scholar
  15. 15.
    M. Raula, M.H. Rashid, T.K. Paira, E. Dinda, T.K. Mandal, Langmuir 26, 8769–8782 (2010)CrossRefGoogle Scholar
  16. 16.
    B.S. Reddy, S.V. Reddy, N.K. Reddy, J. Mater. Sci. Mater. Electron. 24, 5204–5210 (2013)CrossRefGoogle Scholar
  17. 17.
    L. Roza, K.A.J. Fairuzy, P. Dewanta, A.A. Umar, M.Y.A. Rahman, M.M. Salleh, J. Mater. Sci. Mater. Electron. 26, 7955–7966 (2015)CrossRefGoogle Scholar
  18. 18.
    S.-N. Bai, S.C. Wu, J. Mater. Sci. Mater. Electron. 22, 339–344 (2013)CrossRefGoogle Scholar
  19. 19.
    B. Liu, H.C. Zeng, J. Am. Chem. Soc. 125, 4430–4431 (2003)CrossRefGoogle Scholar
  20. 20.
    L. Yang, G. Wang, C. Tang, H. Wang, L. Zhang, Chem. Phys. Lett. 409, 337–341 (2005)CrossRefGoogle Scholar
  21. 21.
    S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nano Lett. 11, 666–671 (2011)CrossRefGoogle Scholar
  22. 22.
    F.H. Zhao, J.G. Zheng, X.F. Yang, X.Y. Li, J. Wang, F.L. Zhao, K.S. Wong, C.L. Liang, M.M. Wu, Nanoscale 2, 1674–1683 (2010)CrossRefGoogle Scholar
  23. 23.
    X. Sun, Q. Li, J. Jiang, Y. Mao, Nanoscale 6, 8769–8780 (2014)CrossRefGoogle Scholar
  24. 24.
    X. Yu, D. Meng, C. Liu, K. Xu, J. Chen, C. Lu, Y. Wang, J. Mater. Sci. Mater. Electron. 25, 3920–3923 (2014)CrossRefGoogle Scholar
  25. 25.
    J.-F. Tang, H.-H. Su, Y.-M. Lu, S.-Y. Chu, CrystEngComm 17, 592–597 (2015)CrossRefGoogle Scholar
  26. 26.
    X.C. Wang, X.M. Chen, B.H. Yang, J. Alloys Compd. 488, 232–237 (2009)CrossRefGoogle Scholar
  27. 27.
    H.G. Kim, P.H. Borse, J.S. Jang, C.W. Ahn, E.D. Jeong, J.S. Lee, Adv. Mater. 23, 2088–2092 (2011)CrossRefGoogle Scholar
  28. 28.
    L. Zhu, M. Hong, G.W. Ho, Sci. Rep. 5, 11609 (2015)CrossRefGoogle Scholar
  29. 29.
    D. Li, D. Chandra, K. Saito, T. Yui, M. Yag, Nanoscale Res. Lett. 9, 542 (2014)CrossRefGoogle Scholar
  30. 30.
    T. Wang, R. Lv, P. Zhang, C. Lia, J. Gong, Nanoscale 7, 77–81 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Subramaniam Sohila
    • 1
    • 3
  • Ramesh Rajendran
    • 2
    • 4
  • Zahira Yaakob
    • 1
    • 2
  • Mohd Asri Mat Teridi
    • 2
  • Kamaruzzaman Sopian
    • 2
  1. 1.Department of Chemical and Process Engineering, Faculty of Engineering and Built EnvironmentUniversiti Kebangsaan Malaysia, UKMBangiMalaysia
  2. 2.Solar Energy Research Institute (SERI)Universiti Kebangsaan Malaysia, UKMBangiMalaysia
  3. 3.Department of Physics and Nanotechnology, Centre for Material Science and Nano DevicesSRM UniversityKattankulathur, ChennaiIndia
  4. 4.Department of PhysicsPeriyar UniversitySalemIndia

Personalised recommendations