Skip to main content
Log in

Photoelectrochemical water splitting performance of flower like ZnO nanostructures synthesized by a novel chemical method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A flower like ZnO nanostructures are synthesized using by a novel chemical method without using any precipitating agent. Structural, morphological and optical properties are studied using powder XRD, FE-SEM, TEM and UV–Vis. spectroscopy measurements. The synthesized flower like ZnO nanostructures are in single hexagonal wurtzite phase with good crystalline nature. The average size of the flower like ZnO nanostructures is 50 nm visualized from FESEM images, which composed of 5 nm ZnO spherical nanoparticles. The formation mechanism for a flower like ZnO nanostructures are discussed in detail. Optical absorption spectrum of ZnO nanoflower showed a band gap of 3.25 eV. Photoelectrochemical water splitting performance is evaluated by current density measurement for different applied voltage. The improved photocurrent density is shown as 0.39 mA/cm at 0.6 V versus Ag/AgCl under simulated solar irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Abe, J. Photochem. Photobiol. C Photochem. Rev. 4, 179–209 (2010)

    Article  Google Scholar 

  2. A. Fujishima, K. Honda, Nature 238, 37–38 (1972)

    Article  Google Scholar 

  3. A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95, 735–758 (1995)

    Article  Google Scholar 

  4. S. Hernández, D. Hidalgo, A. Sacco, A. Chiodoni, A. Lamberti, A. Cauda, E. Tressoab, G. Saraccob, Phys. Chem. Chem. Phys. 17, 7775–7786 (2015)

    Article  Google Scholar 

  5. A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009)

    Article  Google Scholar 

  6. C. Bai, C. Wang, Philos. Trains. R. Soc. A 371, 20130263 (2013)

    Article  Google Scholar 

  7. S. Shet, ECS Trans. 33, 15–25 (2011)

    Article  Google Scholar 

  8. A. Wolcott, W.A. Smith, T.R. Kuykendall, Y. Zhao, J.Z. Zhang, Adv. Funct. Mater. 19, 1849–1859 (2009)

    Article  Google Scholar 

  9. H. Chen, Z. Wei, K. Yan, Y. Bai, Z. Zhu, T. Zhang et al., Small 10, 4760–4769 (2014)

    Article  Google Scholar 

  10. M.H. Huang, Y.Y. Wu, H. Feick, N. Tran, E. Weber, P.D. Yang, Adv. Mater. 13, 113–116 (2001)

    Article  Google Scholar 

  11. B.D. Yao, Y.F. Chan, N. Wang, Appl. Phys. Lett. 81, 757 (2002)

    Article  Google Scholar 

  12. W.I. Park, G.C. Yi, M.Y. Kim, S.J. Pennycook, Adv. Mater. 14, 1841–1843 (2002)

    Article  Google Scholar 

  13. T. Prakash, G. Neri, A. Bonavita, E. Ranjith Kumar, K. Gnanamoorthi, J. Mater. Sci. Mater. Electron. 24, 20–26 (2015)

    Google Scholar 

  14. A. Ashrafi, C. Jagdish, J. Appl. Phys. 102, 071101-1 (2007)

    Article  Google Scholar 

  15. M. Raula, M.H. Rashid, T.K. Paira, E. Dinda, T.K. Mandal, Langmuir 26, 8769–8782 (2010)

    Article  Google Scholar 

  16. B.S. Reddy, S.V. Reddy, N.K. Reddy, J. Mater. Sci. Mater. Electron. 24, 5204–5210 (2013)

    Article  Google Scholar 

  17. L. Roza, K.A.J. Fairuzy, P. Dewanta, A.A. Umar, M.Y.A. Rahman, M.M. Salleh, J. Mater. Sci. Mater. Electron. 26, 7955–7966 (2015)

    Article  Google Scholar 

  18. S.-N. Bai, S.C. Wu, J. Mater. Sci. Mater. Electron. 22, 339–344 (2013)

    Article  Google Scholar 

  19. B. Liu, H.C. Zeng, J. Am. Chem. Soc. 125, 4430–4431 (2003)

    Article  Google Scholar 

  20. L. Yang, G. Wang, C. Tang, H. Wang, L. Zhang, Chem. Phys. Lett. 409, 337–341 (2005)

    Article  Google Scholar 

  21. S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung, Nano Lett. 11, 666–671 (2011)

    Article  Google Scholar 

  22. F.H. Zhao, J.G. Zheng, X.F. Yang, X.Y. Li, J. Wang, F.L. Zhao, K.S. Wong, C.L. Liang, M.M. Wu, Nanoscale 2, 1674–1683 (2010)

    Article  Google Scholar 

  23. X. Sun, Q. Li, J. Jiang, Y. Mao, Nanoscale 6, 8769–8780 (2014)

    Article  Google Scholar 

  24. X. Yu, D. Meng, C. Liu, K. Xu, J. Chen, C. Lu, Y. Wang, J. Mater. Sci. Mater. Electron. 25, 3920–3923 (2014)

    Article  Google Scholar 

  25. J.-F. Tang, H.-H. Su, Y.-M. Lu, S.-Y. Chu, CrystEngComm 17, 592–597 (2015)

    Article  Google Scholar 

  26. X.C. Wang, X.M. Chen, B.H. Yang, J. Alloys Compd. 488, 232–237 (2009)

    Article  Google Scholar 

  27. H.G. Kim, P.H. Borse, J.S. Jang, C.W. Ahn, E.D. Jeong, J.S. Lee, Adv. Mater. 23, 2088–2092 (2011)

    Article  Google Scholar 

  28. L. Zhu, M. Hong, G.W. Ho, Sci. Rep. 5, 11609 (2015)

    Article  Google Scholar 

  29. D. Li, D. Chandra, K. Saito, T. Yui, M. Yag, Nanoscale Res. Lett. 9, 542 (2014)

    Article  Google Scholar 

  30. T. Wang, R. Lv, P. Zhang, C. Lia, J. Gong, Nanoscale 7, 77–81 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This project is financed by Universiti Kebangsaan Malaysia under Grant DIP-2014-011 and FRGS/2/2013/ST01/UKM/01/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Rajendran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohila, S., Rajendran, R., Yaakob, Z. et al. Photoelectrochemical water splitting performance of flower like ZnO nanostructures synthesized by a novel chemical method. J Mater Sci: Mater Electron 27, 2846–2851 (2016). https://doi.org/10.1007/s10854-015-4100-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4100-2

Keywords

Navigation