Rapid flame synthesis of multilayer graphene on SiO2/Si substrate

  • Hongzhong Liu
  • Shuya Zhu
  • Weitao Jiang


We report an approach to synthesize transfer-free multilayer graphene films rapidly on SiO2/Si substrates by ethanol/H2 flame in only 2 min. The ethanol/H2 flame not only serves as a heat source and carbon source, but also provides protection atmosphere during the growth process. Raman spectra and TEM analysis show carbon atoms segregate to the Ni/SiO2 interface are demonstrated to be multilayer graphene, while the carbon films form on top of the Ni layer are graphite layer. The graphene films synthesized on quartz substrate after Ni etching exhibits transmittance of up to 81 % at 550 nm and sheet resistance in the range from 1120 to 1540 Ω sq−1.


Carbon Film Graphene Film Transmission Electron Microscope Grid Multilayer Graphene Flame Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the Major Research Plan of National Natural Science Foundation on Nanomanufacturing (No. 91323303), National Natural Science Foundation of China (No. 51275400), National Science and Technology Project (Nos. 2011ZX04014-071, SK201401A53-01, CERS-1-X1), the Fundamental Research Funds for the Central Universities, and China Postdoctoral Science Foundation (Nos. 2012M520081, 2013M530419, 2013M530424, and 2013M532035).


  1. 1.
    K. Yan, L. Fu, H. Peng, Z. Liu, Designed CVD growth of graphene via process engineering. Acc. Chem. Res. 46, 2263–2274 (2013)CrossRefGoogle Scholar
  2. 2.
    R.S. Edwards, K.S. Coleman, Graphene film growth on polycrystalline metals. Acc. Chem. Res. 46, 23–30 (2013)CrossRefGoogle Scholar
  3. 3.
    A. Allard, L. Wirtz, Graphene on metallic substrates: suppression of the Kohn anomalies in the phonon dispersion. Nano Lett. 10, 4335–4340 (2010)CrossRefGoogle Scholar
  4. 4.
    J. Chen, Y. Guo, L. Jiang et al., Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates. Adv. Mater. 26, 1348–1353 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Ismach, C. Druzgalski, S. Penwell et al., Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett. 10, 1542–1548 (2010)CrossRefGoogle Scholar
  6. 6.
    C.Y. Su, A.Y. Lu, C.Y. Wu et al., Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett. 11, 3612–3616 (2011)CrossRefGoogle Scholar
  7. 7.
    Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J.M. Tour, Growth of graphene from solid carbon sources. Nature 468, 549–552 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Zheng, K. Takei, B. Hsia et al., Metal-catalyzed crystallization of amorphous carbon to graphene. Appl. Phys. Lett. 96, 063110 (2010)CrossRefGoogle Scholar
  9. 9.
    J. Kwak, J.H. Chu, J.K. Choi et al., Near room-temperature synthesis of transfer-free graphene films. Nat. Commun. 3, 645 (2012)CrossRefGoogle Scholar
  10. 10.
    M.H. Rummeli, A. Bachmatiuk, A. Scott et al., Direct low-temperature nanographene CVD synthesis over a dielectric insulator. ACS Nano 4, 4206–4210 (2010)CrossRefGoogle Scholar
  11. 11.
    X.L. Ding, G.Q. Ding, X.M. Xie, F.Q. Huang, M.H. Jiang, Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition. Carbon 49, 2522–2525 (2011)CrossRefGoogle Scholar
  12. 12.
    P. Dharmaraj, K. Jeganathan, V. Gokulakrishnan et al., Controlled and selective area growth of monolayer graphene on 4H-SiC substrate by electron-beam-assisted rapid heating. J. Phys. Chem. C 117, 19195–19202 (2013)CrossRefGoogle Scholar
  13. 13.
    J.B. Howard, J.T. Mckinnon, Y. Makarovsky, A.L. Lafleur, M.E. Johnson, Fullerenes C60 and C70 in flames. Nature 352, 139–141 (1991)CrossRefGoogle Scholar
  14. 14.
    R.L. Vander Wal, T.M. Ticich, V.E. Curtis, Diffusion flame synthesis of single-walled carbon nanotubes. Chem. Phys. Lett. 323, 217–223 (2000)CrossRefGoogle Scholar
  15. 15.
    Z. Li, H.W. Zhu, K.L. Wang et al., Ethanol flame synthesis of highly transparent carbon thin films. Carbon 49, 237–241 (2011)CrossRefGoogle Scholar
  16. 16.
    Z. Li, H.W. Zhu, D. Xie et al., Flame synthesis of few-layered graphene/graphite films. Chem. Commun. 47, 3520–3522 (2011)CrossRefGoogle Scholar
  17. 17.
    N.K. Memon, S.D. Tse, J.F. Al-Sharab et al., Flame synthesis of graphene films in open environments. Carbon 49, 5064–5070 (2011)CrossRefGoogle Scholar
  18. 18.
    D. Pribat, C.S. Lee, L. Baraton et al., Dual graphene films growth process based on plasma-assisted chemical vapor deposition. Proc. SPIE 7761, 77610P (2010)CrossRefGoogle Scholar
  19. 19.
    Z.W. Peng, Z. Yan, Z.Z. Sun, J.M. Tour, Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel. ACS Nano 5, 8241–8247 (2011)CrossRefGoogle Scholar
  20. 20.
    D. Kang, W.J. Kim, J.A. Lim, Y.W. Song, Direct growth and patterning of multilayer graphene onto a targeted substrate without an external carbon source. ACS Appl. Mater. Interfaces 4, 3663–3666 (2012)CrossRefGoogle Scholar
  21. 21.
    G. Zhao, D. Shao, C. Chen, X. Wang, Synthesis of few-layered graphene by H[sub 2]O[sub 2] plasma etching of graphite. Appl. Phys. Lett. 98, 183114 (2011)CrossRefGoogle Scholar
  22. 22.
    A. Reina, X.T. Jia, J. Ho et al., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009)CrossRefGoogle Scholar
  23. 23.
    D.H. Seo, S. Kumar, K. Ostrikov, Control of morphology and electrical properties of self-organized graphenes in a plasma. Carbon 49, 4331–4339 (2011)CrossRefGoogle Scholar
  24. 24.
    A. Bisht, S. Chockalingam, O.S. Panwar et al., Synthesis of vertical graphene by microwave plasma enhanced chemical vapor deposition technique, in Physics of Semiconductor Devices, ed. by V.K. Jain, A. Verma (Springer-Verlag, 2014), pp. 559–562Google Scholar
  25. 25.
    J. Chen, Y. Wen, Y. Guo et al., Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 133, 17548–17551 (2011)CrossRefGoogle Scholar
  26. 26.
    S.Y. Zhu, Q.F. Li, Q. Chen et al., Cu hill and graphene grain evolution in the synthesis of millimeter-sized single crystal graphene during low pressure chemical vapor deposition. RSC Adv. 4, 32941–32945 (2014)CrossRefGoogle Scholar
  27. 27.
    Q. Chen, W.H. Liu, S.X. Guo et al., Synthesis of well-aligned millimeter-sized tetragon-shaped graphene domains by tuning the copper substrate orientation. Carbon 93, 945–952 (2015)CrossRefGoogle Scholar
  28. 28.
    Y. Kim, W. Song, S.Y. Lee et al., Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 98, 263106–2631063 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.State Key Laboratory for Manufacturing Systems EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations