Advertisement

Facile synthesis of nano-crystalline anatase TiO2 and their applications in degradation of Direct blue 199

  • Madhvi
  • Laxman Singh
  • Sudhakar Saroj
  • Youngil Lee
  • Satya Vir Singh
Article

Abstract

Nano-crystalline anatase TiO2 has been successfully synthesized by solution combustion synthesis using solid TiO2 powder as raw material. XRD patterns confirmed the formation of anatase phase of the calcined powder at 500 °C for 5 h. The bright-field TEM image revealed that the particle size was in the range of 10–25 nm, which is in nearly good agreement with the average crystallite size obtained from XRD. SEM image of the calcined TiO2 powder showed the average grain sizes in the range of 150 nm–0.5 µm and spherical in shape. XPS studies showed the presence of titanium and oxygen which confirmed the purity of the material. The obtained nanoparticles were used for photodegradation of dye Direct blue 199. TiO2 nanoparticles degraded about 99.33 % Direct blue 199 by using solar rays in 3 h.

Keywords

TiO2 Photocatalytic Activity TiO2 Nanoparticles Diffuse Reflectance Spectroscopy Solution Combustion Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)CrossRefGoogle Scholar
  2. 2.
    P.V. Kamat, Chem. Rev. 93, 267 (1993)CrossRefGoogle Scholar
  3. 3.
    J. Livage, M. Henry, C. Sanchez, Prog. Solid State Chem. 18, 259 (1988)CrossRefGoogle Scholar
  4. 4.
    J. Wöllenstein, M. Burgmair, G. Plescher, T. Sulima, J. Hildenbrand, H. Böttner, I. Eisele, Sens. Actuators B Chem. 93, 442 (2003)CrossRefGoogle Scholar
  5. 5.
    R.L. Hoffman, J. Appl. Phys. 95, 5813 (2004)CrossRefGoogle Scholar
  6. 6.
    U. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  7. 7.
    G. Shen, P.C. Chen, K. Ryu, C. Zhou, J. Mater. Chem. 19, 828 (2009)CrossRefGoogle Scholar
  8. 8.
    M. Tomkiewicz, Catal. Today 58, 115 (2000)CrossRefGoogle Scholar
  9. 9.
    G. Ramakrishna, H.N. Ghosh, Langmuir 19, 505 (2003)CrossRefGoogle Scholar
  10. 10.
    E. Pelizzetti, C. Minero, Electrochim. Acta 38, 47 (1993)CrossRefGoogle Scholar
  11. 11.
    M. Frank, P.K. Dutta, M. Fulkerson, B. Patton, V. Thomas, G. Hunter, Sens. Actuators B 78, 64 (2001)CrossRefGoogle Scholar
  12. 12.
    M. Ferroni, M.C. Carotta, V. Guidi, G. Martinelli, F. Ronconi, O. Richard, D.V. Dyck, J.V. Landuyt, Sens. Actuators B 68, 140 (2000)CrossRefGoogle Scholar
  13. 13.
    B. Tan, Y. Wu, J. Phys. Chem. B 110, 15932 (2006)CrossRefGoogle Scholar
  14. 14.
    S. Pavasupree, S. Ngamsinlapasathian, M. Nakajima, Y. Suzuki, S. Yoshikawa, J. Photochem. Photobiol. A Chem. 184, 163 (2006)CrossRefGoogle Scholar
  15. 15.
    T.H. Tsai, S.C. Chiou, S.M. Chen, Int. J. Electrochem. Sci. 6, 3333 (2011)Google Scholar
  16. 16.
    S.Y. Chae, M.K. Park, S.K. Lee, T.Y. Kim, W.I. Lee, Chem. Mater. 15, 3326 (2003)CrossRefGoogle Scholar
  17. 17.
    Y. Bessekhouad, D. Robert, J.V. Weber, Int. J. Photoenergy 5, 153 (2003)CrossRefGoogle Scholar
  18. 18.
    I. Truijen, M.K. Van Bael, H. VandenRul, J.D. Haen, J. Mullens, J. Sol-Gel. Sci. Technol. 41, 43 (2007)CrossRefGoogle Scholar
  19. 19.
    C.C. Wang, J.Y. Ying, Chem. Mater. 11, 3113 (1999)CrossRefGoogle Scholar
  20. 20.
    H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater. 7, 663 (1995)CrossRefGoogle Scholar
  21. 21.
    J. Beusen, M.K. Van Bael, H. VandenRul, J. Haen, J. Mullens, J. Eur. Ceram. Soc. 27, 4529 (2007)CrossRefGoogle Scholar
  22. 22.
    A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, S. Agilan, R. Balasundaraprabhu, J. Mater. Sci. Mater. Electron. 24, 553 (2013)CrossRefGoogle Scholar
  23. 23.
    S.J. Kim, S.D. Park, Y.H. Jeong, J. Am. Ceram. Soc. 82, 927 (1999)CrossRefGoogle Scholar
  24. 24.
    Z.J. Li, B. Hou, Y. Xu, D. Wu, Y.H. Sun, Acta Phys. Chim. Sin. 21, 229 (2005)Google Scholar
  25. 25.
    Y.C. Liang, C.C. Wang, C.C. Kei, Y.C. Hsueh, W.H. Cho, T.P. Perng, J. Phys. Chem. C 115, 9498 (2011)CrossRefGoogle Scholar
  26. 26.
    X. He, Y. Cai, H. Zhang, C. Liang, J. Mater. Chem. 21, 475 (2011)CrossRefGoogle Scholar
  27. 27.
    AAMd Mamun, Y. Kusumoto, T. Zannat, S.Md. Islam, Phys. Chem. Chem. Phys. 13, 21026 (2011)CrossRefGoogle Scholar
  28. 28.
    J.S. Jang, S.H. Choi, H.G. Kim, J.S. Lee, J. Phys. Chem. C 112, 17200 (2008)CrossRefGoogle Scholar
  29. 29.
    X.Z. Li, F.B. Li, C.L. Yang, W.K. Ge, J. Photochem. Photobiol. A Chem. 141, 209 (2001)CrossRefGoogle Scholar
  30. 30.
    K. Woan, G. Pyrgiotakis, W. Sigmund, Adv. Mater. 21, 2233 (2009)CrossRefGoogle Scholar
  31. 31.
    H. Huang, D. Li, Q. Lin, W. Zhang, Y. Shao, Y. Chen, M. Sun, X. Fu, Environ. Sci. Technol. 43, 4164 (2009)CrossRefGoogle Scholar
  32. 32.
    S. Liu, J. Wu, X. Liu, R. Jiang, J. Mol. Catal. A Chem. 332, 84 (2010)CrossRefGoogle Scholar
  33. 33.
    W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, S. Han, J. Linb, R. Wang, Phys. Chem. Chem. Phys. 12, 15119 (2010)CrossRefGoogle Scholar
  34. 34.
    M. Dang, Y. Zhou, H. Li, C. Lv, J. Mater. Sci. Mater. Electron. 23, 320 (2012)CrossRefGoogle Scholar
  35. 35.
    A.E. Shalan, M. Rasly, M.M. Rashad, J. Mater. Sci. Mater. Electron. 25, 3141 (2014)CrossRefGoogle Scholar
  36. 36.
    N.R. Mathews, M.A.C. Jacome, C.A. Chavez, J.A.T. Antonio, J. Mater. Sci. Mater. Electron. 26, 5574 (2015)CrossRefGoogle Scholar
  37. 37.
    K. Vijayalakshmi, S.D. Jereil, J. Mater. Sci. Mater. Electron. 26, 3790 (2015)CrossRefGoogle Scholar
  38. 38.
    T. Gholami, M. Bazarganipour, M.S. Niasari, S. Bagheri, J. Mater. Sci. Mater. Electron. 26, 6170 (2015)CrossRefGoogle Scholar
  39. 39.
    L. Singh, U.S. Rai, K.D. Mandal, N.B. Singh, Prog. Cryst. Growth Charact. Mater. 60, 15 (2014)CrossRefGoogle Scholar
  40. 40.
    L. Singh, U.S. Rai, K.D. Mandal, J. Alloys Compd. 555, 176 (2013)CrossRefGoogle Scholar
  41. 41.
    X. Chen, S.S. Mao, J. Nanosci. Nanotechnol. 6, 906 (2006)CrossRefGoogle Scholar
  42. 42.
    M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, M.H. Cho, J. Mater. Chem. A 2, 637 (2014)CrossRefGoogle Scholar
  43. 43.
    M.S. Kim, W.J. Jo, D. Lee, S.H. Baeck, J.H. Shin, B.C. Lee, Bull. Korean Chem. Soc. 34, 1397 (2013)CrossRefGoogle Scholar
  44. 44.
    Z. Song, J. Hrbek, R. Osgood, Nano Lett. 5, 1327 (2005)CrossRefGoogle Scholar
  45. 45.
    H. Tang, H. Berger, P.E. Schmid, F. Levy, Solid State Commun. 87, 847 (1993)CrossRefGoogle Scholar
  46. 46.
    S.T. Hayle, G.G. Gonfa, Am. J. Nanosci. Nanotechnol. 2, 1 (2014)CrossRefGoogle Scholar
  47. 47.
    M. Hema, Y.A. Arasi, P. Tamilselvi, R. Anbarasan, Chem. Sci. Trans. 2, 239 (2013)CrossRefGoogle Scholar
  48. 48.
    R. Sharmila, R. Venckatesh, R. Sivaraj, Int. J. Innov. Res. Sci. Eng. Technol. 3, 15206 (2014)CrossRefGoogle Scholar
  49. 49.
    C.H. Han, H.S. Lee, S.D. Han, Bull. Korean Chem. Soc. 29, 1495 (2008)CrossRefGoogle Scholar
  50. 50.
    K. Thangavelu, R. Annamalai, D. Arulnandhi, Int. J. Emerg. Technol. Adv. Eng. 3, 636 (2013)Google Scholar
  51. 51.
    N. Shahruz, M.M. Hossain, World Appl. Sci. J. 12, 1981 (2011)Google Scholar
  52. 52.
    M. Devi, M.R. Panigrahi, U.P. Singh, J. Mater. Sci. Mater. Electron. 26, 1186 (2015)CrossRefGoogle Scholar
  53. 53.
    S.G. Pawar, S.L. Patil, M.A. Chougule, B.T. Raut, S.A. Pawar, R.N. Mulik, V.B. Patil, J. Mater. Sci. Mater. Electron. 23, 273 (2012)CrossRefGoogle Scholar
  54. 54.
    A. Giwa, P.O. Nkeonye, K.A. Bello, E.G. Kolawole, J. Environ. Protect. 4, 766 (2013)CrossRefGoogle Scholar
  55. 55.
    G.V. Khade, M.B. Suwarnkar, N.L. Gavade, K.M. Garadkar, J. Mater. Sci. Mater. Electron. 26, 3309 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Madhvi
    • 1
  • Laxman Singh
    • 2
  • Sudhakar Saroj
    • 1
  • Youngil Lee
    • 2
  • Satya Vir Singh
    • 1
  1. 1.Department of Chemical EngineeringIndian Institute of Technology (BHU), VaranasiVaranasiIndia
  2. 2.Department of ChemistryUniversity of UlsanUlsanRepublic of Korea

Personalised recommendations