New microwave dielectric system of Li4x Mg3(1−x)Al6(1−x)Ti5x O12 with adjustable thermal stability and high quality factor

  • Huanfu Zhou
  • Jianzhang Gong
  • Nan Wang
  • Xiuli Chen


Li4x Mg3(1−x)Al6(1−x)Ti5x O12 (x = 0.2, 0.4, 0.6, 0.8) ceramics were prepared by a solid state reaction method. The phase evolution, microstructure and composition of ceramics were investigated using X-ray powder diffractometer, scanning electron microscope, energy dispersive spectrometer. The microwave dielectric properties of ceramics were studied by a network analyzer. Both MgAl2O4 and Li4Ti5O12 have a cubic spinel structure, whereas no uniform solid solution was formed in Li4x Mg3(1−x)Al6(1−x)Ti5x O12 ceramics. There were Al-rich compounds and Ti-rich compounds in the mixed phases. With increasing x form 0.2 to 0.8, Al-rich compounds decreased and Ti-rich compounds increased. A complex phase evolution was appeared in the process, such as Mg2TiO4, Li2MgTi3O8 and Li4Ti5O12 compounds. With increasing x values, the sintering temperature was reduced from 1280 to 925 °C. Li4x Mg3(1−x)Al6(1−x)Ti5x O12 ceramics presented an excellent comprehensive performance with ε r of 11.5–26.5, Q × f values of 7102–30,191 GHz and τ f values of −55.4 ~ +5.7 ppm/ °C.


Sinter Temperature Apparent Density MgAl2O4 Microwave Dielectric Property High Quality Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Natural Science Foundation of China (Nos. 11464009 and 11364012), Natural Science Foundation of Guangxi (Nos. 2015GXNSFDA139033, 2014GXNSFAA118312, 2014GXNSFAA118326 and 2013GXNSFAA019291), Research Start-up Funds Doctor of Guilin University of Technology (Nos. 002401003281 and 002401003282) and Project of Outstanding Young Teachers’ Training in Higher Education Institutions of Guangxi.


  1. 1.
    K. Wakino, High frequency dielectrics and their applications, in Proceedings of the 6th IEEE International Symposium on Application of Ferroelectrics, Institute of Electrical and Electronic Engineers (New York, 1986), pp. 97–106Google Scholar
  2. 2.
    S.J. Fiedziuszko, I.C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S.N. Stitzer, K. Wakino, Dielectric materials, devises, and circuits. IEEE Trans. Microw. Theory Technol. 50, 706–720 (2002)CrossRefGoogle Scholar
  3. 3.
    A.G. Belous, Physicochemical aspects of the development of MW dielectrics, and their use. J. Eur. Ceram. Soc. 21, 2717–2722 (2001)CrossRefGoogle Scholar
  4. 4.
    S.B. Narang, S. Bahel, Low loss dielectric ceramics for microwave applications: a review. J. Ceram. Process. Res. 11(3), 316–321 (2010)Google Scholar
  5. 5.
    B. Tang, H. Li, P. Fan, S.Q. Yu, S.R. Zhang, The effect of Mg: Ti ratio on the phase composition and microwave dielectric properties of MgTiO3 ceramics prepared by one synthetic process. J. Mater. Sci. Mater. Electron. 25, 2482–2486 (2014)CrossRefGoogle Scholar
  6. 6.
    M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier, Oxford, 2008)Google Scholar
  7. 7.
    Y. Wu, D. Zhou, J. Guo, L.X. Pang, H. Wang, X. Yao, Temperature stable microwave dielectric ceramic 0.3Li2TiO3–0.7Li(Zn0.5Ti1.5)O4 with ultra-low dielectric loss. Mater. Lett. 65, 2680–2682 (2011)CrossRefGoogle Scholar
  8. 8.
    A. Chaouchi, S. d’Astorg, S. Marinel, Low sintering temperature of (Zn0.65Mg0.35)TiO3xCaTiO3 based dielectric with controlled temperature coefficient. Ceram. Int. 35(5), 1985–1989 (2009)CrossRefGoogle Scholar
  9. 9.
    K. Tang, Q. Wu, X.Y. Xiang, Low temperature sintering and microwave dielectric properties of zinc silicate ceramics. J. Mater. Sci. Mater. Electron. 23, 1099–1102 (2012)CrossRefGoogle Scholar
  10. 10.
    M. Guo, G. Dou, Y.X. Li, S.P. Gong, The improvement research on microwave dielectric properties of magnesium tungstate for LTCC. J. Mater. Sci. Mater. Electron. 26, 608–612 (2015)CrossRefGoogle Scholar
  11. 11.
    K.P. Surendran, P.V. Bijumon, P. Mohanan, M.T. Sebastian, (1−x) MgAl2O4xTiO2 dielectrics for microwave and millimeter wave applications. Appl. Phys. A Mater. 81, 823–826 (2005)CrossRefGoogle Scholar
  12. 12.
    A. Erdas, S. Ozcan, D. Nalci, M.O. Guler, H. Akbulut, Novel Ag/Li4Ti5O12 binary composite anode electrodes for high capacity Li-ion batteries. Surf. Coat. Technol. 271, 136–140 (2015)CrossRefGoogle Scholar
  13. 13.
    Q. Zeng, W. Li, J. Shi, J. Guo, M. Zuo, W. Wu, A new microwave dielectric ceramic for LTCC applications. J. Am. Ceram. Soc. 89(5), 1733–1735 (2006)CrossRefGoogle Scholar
  14. 14.
    D. Zhou, H. Wang, L.X. Pang, X. Yao, X.G. Wu, Microwave dielectric characterization of a Li3NbO4 ceramic and its chemical compatibility with silver. J. Am. Ceram. Soc. 91(12), 4115–4117 (2008)CrossRefGoogle Scholar
  15. 15.
    L.X. Pang, D. Zhou, A low-firing microwave dielectric material in Li2O–ZnO–Nb2O5 system. Mater. Lett. 64, 2413–2415 (2010)CrossRefGoogle Scholar
  16. 16.
    G.H. Chen, M.Z. Hou, Y. Bao, C.L. Yuan, C.R. Zhou, H.R. Xu, Silver co-firable Li2ZnTi3O8 microwave dielectric ceramics with LZB glass additive and TiO2 dopant. Int. J. Appl. Ceram. Technol. 10(3), 492–501 (2013)CrossRefGoogle Scholar
  17. 17.
    J. Krupka, Precise measurements of the complex permittivity of dielectric materials at microwave frequencies. Mater. Chem. Phys. 79, 195–198 (2003)CrossRefGoogle Scholar
  18. 18.
    J.J. Bian, Y.F. Dong, Sintering behavior, microstructure and microwave dielectric properties of Li2+xTiO3 (0 ≤ x ≤ 0.2). Mater. Sci. Eng. B 176, 147–151 (2011)CrossRefGoogle Scholar
  19. 19.
    S.S.A. Jaroudi, A.U. Hamid, A.R.I. Mohammed, S. Saner, Use of X-ray powder diffraction for quantitative analysis of carbonate rock reservoir samples. Powder Technol. 175, 115–121 (2007)CrossRefGoogle Scholar
  20. 20.
    M.H. Kim, S. Nahm, W.S. Lee, M.J. Yoo, J.C. Park, H.J. Lee, Effect of microstructure on microwave dielectric properties of Al2O3-added Ba(Zn1/3Ta2/3)O3 ceramics. Jpn. J. Appl. Phys. 43(4A), 1438–1441 (2004)CrossRefGoogle Scholar
  21. 21.
    G.A. Ravi, F. Azough, R. Freer, Effect of Al2O3 on the structure and microwave dielectric properties of Ca0.7Ti0.7La0.3Al0.3O3. J. Eur. Ceram. Soc. 27, 2855–2859 (2007)CrossRefGoogle Scholar
  22. 22.
    P.J. Liao, T. Qiu, J. Yang, X.Y. Lu, Effect of Al2O3 addition on microwave dielectric properties of BaCo0.194Zn0.116Nb0.69O3 ceramics. Electron. Mater. Lett. 10(1), 121–125 (2014)CrossRefGoogle Scholar
  23. 23.
    X.L. Chen, H.F. Zhou, L. Fang, X.B. Liu, Y.L. Wang, Microwave dielectric properties and its compatibility with silver electrode of Li2MgTi3O8 ceramics. J. Alloys Compd. 509, 5829–5832 (2011)CrossRefGoogle Scholar
  24. 24.
    A. Belous, O. Ovchar, D. Durilin, High-Q microwave dielectric materials based on the spinel Mg2TiO4. J. Am. Ceram. Soc. 89(11), 3441–3445 (2006)CrossRefGoogle Scholar
  25. 25.
    I.N. Jawahar, P. Mohanan, M.T. Sebastian, A5B4O15 (A = Ba, Sr, Mg, Ca, Zn; B = Nb, Ta) microwave dielectric ceramics. Mater. Lett. 57, 4043–4048 (2003)CrossRefGoogle Scholar
  26. 26.
    A. Kan, H. Ogawa, H. Ohsato, Microwave dielectric properties of Y2BaCuO5 compound substituted Ni for Cu. Mater. Sci. Eng. B 79, 180–182 (2001)CrossRefGoogle Scholar
  27. 27.
    H. Kagata, R. Saito, H. Katsumura, Al2O3–MgO–ReOx (Re = rare earth) based LTCC and its applications to multilayer non-shrinkage substrate for microwave devices. J. Electro-ceram. 13, 277–280 (2004)CrossRefGoogle Scholar
  28. 28.
    P.V. Bijumon, M.T. Sebastian, P. Mohanan, Experimental investigations and three dimensional transmission line matrix simulation of Ca5−xAxB2TiO12 (A = Mg, Zn, Ni and Co: B = Nb and Ta) ceramic resonators. J. Appl. Phys. 98, 124105–124115 (2005)CrossRefGoogle Scholar
  29. 29.
    M.T. Sebastian, S. Solomon, R. Ratheesh, J. George, P. Mohanan, Preparation, characterization and microwave properties of RETiNbO6 (RE = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Y, and Yb) dielectric ceramics. J. Am. Ceram. Soc. 84, 1487–1489 (2001)CrossRefGoogle Scholar
  30. 30.
    I. Levin, T.A. Vanderah, R. Coutts, Phase equilibria and dielectric properties in perovskite-like (1−x)LaCa0.5Zr0.5O3xATiO3 (A = Ca, Sr) ceramics. J. Mater. Res. 17, 1729–1734 (2002)CrossRefGoogle Scholar
  31. 31.
    S.Y. Cho, C.H. Kim, D.W. Kim, K.S. Hong, Dielectric properties of Ln(Mg1/2Ti1/2)O3 as substrates for high-Tc superconductor thin films. J. Mater. Res. 14, 2484–2487 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Huanfu Zhou
    • 1
  • Jianzhang Gong
    • 1
  • Nan Wang
    • 1
  • Xiuli Chen
    • 1
  1. 1.State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, College of Materials Science and EngineeringGuilin University of TechnologyGuilinPeople’s Republic of China

Personalised recommendations