Advertisement

Preparation and characterization of TiInVO6-nanomaterial using precipitation method and its multi applications

  • Jayaraman Kamalakkannan
  • Vijayaragavan Lenin Chandraboss
  • Selvaraj Prabha
  • Bala Karthikeyan
  • Sambandam Senthilvelan
Article
  • 76 Downloads

Abstract

In the present investigation we have reported the undoped TiO2 and doped TiInVO6 nanomaterials by simple precipitation method and sonication technique. The undoped TiO2 and doped TiInVO6 nanomaterials were characterized by HR-SEM with EDX, HR-TEM, XRD, FT-IR, FT-RAMAN, PL and UV–Vis DRS analysis. The photocatalytic activity of TiInVO6 nanomaterial was studied through the photodegradation of methylene blue (MB) under UV-light irradiation at 365 nm. The photodegradation of MB under various parameters have been studied. The photodegradation of MB was found to be follow pseudo-first-order kinetics. The quantum yield and formation of hydroxyl radical were confirmed and analysed by fluorescence technique. The electrochemical study of the prepared nonmaterial was discussed in detail. The antimicrobial activity of the prepared nanomaterials has also been investigated. The prepared TiInVO6 nanomaterial was found to be stable and reusable. It would be useful for multi applications.

Keywords

TiO2 Chemical Oxygen Demand Methylene Blue Photocatalytic Activity Methylene Blue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

References

  1. 1.
    Q.J. Xiang, J.G. Yu, M. Jaroniec, Chem. Soc. Rev. 41, 782–796 (2012)CrossRefGoogle Scholar
  2. 2.
    H.K. Shon, S. Phuntsho, S. Vigneswaran, Desalin. Water Treat. 225, 235–248 (2008)CrossRefGoogle Scholar
  3. 3.
    M.A. Fox, M.T. Dulay, Chem. Rev. 93, 341–357 (1993)CrossRefGoogle Scholar
  4. 4.
    N. Kislov, S.S. Srinivasan, Yu. Emirov, E.K. Stefanakos, Mater. Sci. Eng. B 153, 70–77 (2008)CrossRefGoogle Scholar
  5. 5.
    K.M. Tarquinio, N.K. Kothurkar, D.Y. Goswami, R.C. Sanders Jr, A.L. Zaritsky, A.M. LeVine, Int. J. Nanomed. 5, 177–183 (2010)CrossRefGoogle Scholar
  6. 6.
    H. Xu, H. Li, L. Xu, C. Wu, G. Sun, Y. Xu, J. Chu, Ind. Eng. Chem. Res. 48, 10771–10778 (2009)CrossRefGoogle Scholar
  7. 7.
    Y. Shen, M. Huang, Y. Huang, J. Lin, J. Wu, Alloys Compd. 496, 287–292 (2010)CrossRefGoogle Scholar
  8. 8.
    C. Zhang, Y.F. Zhu, Chem. Mater. 17, 3537–3545 (2005)CrossRefGoogle Scholar
  9. 9.
    G. Huang, Y. Zhu, CrystEngComm 14, 8076–8082 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Kamalakkannan, V.L. Chandraboss, S. Prabha, S. Senthilvelan, RSC Adv. 5, 77000–77013 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Kamalakkannan, V.L. Chandraboss, B. Loganathan, S. Prabha, B. Karthikeyan, S. Senthilvelan, Appl. Nanosci. (2015). doi: 10.1007/s13204-015-0474-y Google Scholar
  12. 12.
    J. Kamalakkannan, V.L. Chandraboss, S. Prabha, B. Karthikeyan, S. Senthilvelan, Can. Chem. Trans. 3, 327–339 (2015)Google Scholar
  13. 13.
    C. Mondal, M. Ganguly, A. Sinha, J. Pal, R. Sahoo, T. Pal, CrystEngComm 15, 6745–6751 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Masato, M. Yui, M. Yuichi, I. Keita, Chem. Commun. 47, 9591–9593 (2011)CrossRefGoogle Scholar
  15. 15.
    Y. Zhiyong, D. Laub, M. Bensimon, J. Kiwi, Inorganica Chim. Acta 361, 589–594 (2008)CrossRefGoogle Scholar
  16. 16.
    E. Hague, J.W. Jun, S.H. Jung, Hazard. Mater. 185, 507–511 (2011)CrossRefGoogle Scholar
  17. 17.
    Min Zeng, Korean Chem. Soc. 34, 3–953 (2013)CrossRefGoogle Scholar
  18. 18.
    Tanmay K. Ghorai, J. Mater. Res. Technol. 2, 10–17 (2013)CrossRefGoogle Scholar
  19. 19.
    H. Zhang, G. Chen, D.W. Bahnemann, J. Mater. Chem. 19, 5089–5121 (2009)CrossRefGoogle Scholar
  20. 20.
    K.M. Joshi, V.S. Shrivastava, Int. J. Nanodimens. 2, 241–252 (2012)Google Scholar
  21. 21.
    L. Miao, S. Tanemura, S. Toh, K. Kaneko, M. Tanemura, J. Cryst. Growth 264, 246–252 (2004)CrossRefGoogle Scholar
  22. 22.
    X. Xue, W. Ji, Z. Mao, H. Mao, Y. Wang, X. Wang, W. Ruan, B. Zhao, J.R. Lombardi, J. Phys. Chem. C 116, 8792–8797 (2012)CrossRefGoogle Scholar
  23. 23.
    M. Gotić, S. Musić, M. Ivanda, M. Šoufek, S. Popović, J. Mol. Struct. 744, 535–540 (2005)Google Scholar
  24. 24.
    J.A. Zhang, J. Zhang, N. Cui, X. Tie, Y. An, L. Li, J. Mol. Catal. A Chem. 304, 28–32 (2009)CrossRefGoogle Scholar
  25. 25.
    S. Obregon, G. Colon, RSC Adv. 4, 6920–6926 (2014)CrossRefGoogle Scholar
  26. 26.
    B. Subash, B. Krishnakumar, R. Velmurugan, M. Swaminathan, M. Shanthi, Catal. Sci. Technol. 2, 2319–2326 (2012)CrossRefGoogle Scholar
  27. 27.
    S. Balachandran, M. Swaminathan, J. Phys. Chem. C 116, 26306–26312 (2012)CrossRefGoogle Scholar
  28. 28.
    V.L. Chandraboss, L. Natanapatham, B. Karthikeyan, J. Kamalakkannan, S. Prabha, S. Senthilvelan, Mater. Res. Bull. 48, 3707–3712 (2013)CrossRefGoogle Scholar
  29. 29.
    M.A. Behnajady, N. Modirdshahla, M. Shokri, Chemosphere 55, 129–134 (2004)CrossRefGoogle Scholar
  30. 30.
    M.S. Mashkour, A.F. Al-Kaim, L.M. Ahmed, F.H. Hussein, Int. J. Chem. Sci. 9, 969–979 (2011)Google Scholar
  31. 31.
    S. Zhang, J. Li, M. Zeng, J. Li, J. Xu, X. Wang, Chem. Eur. J. 20, 9805–9812 (2014)CrossRefGoogle Scholar
  32. 32.
    V.L. Chandraboss, J. Kamalakkannan, S. Prabha, S. Senthilvelan, RSC Adv. 5, 25857–25869 (2015)CrossRefGoogle Scholar
  33. 33.
    Q. Xiang, J. Yu, M. Jaroniec, Phys. Chem. Chem. Phys. 13, 4853–4861 (2011)CrossRefGoogle Scholar
  34. 34.
    Y. Zhao, C.Z. Li, X.H. Liu, F. Gu, H.B. Jiang, W. Shao, L. Zhang, Y. He, Mater. Lett. 61, 79–83 (2007)CrossRefGoogle Scholar
  35. 35.
    P.M. Kumar, S. Badrinarayanan, M. Sastry, Thin Solid Films 358, 122–130 (2000)CrossRefGoogle Scholar
  36. 36.
    K.I. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Electrochem. Commun. 2, 207–210 (2000)CrossRefGoogle Scholar
  37. 37.
    L. Wei Cheng, J. Chien Tsai, T. Yun Huang, C. Wei Huang, B. Unnikrishnan, Y. Wei Lin, Mater. Res. Express. 1, 025023 (2014)CrossRefGoogle Scholar
  38. 38.
    B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Langmuir 29, 939–949 (2013)CrossRefGoogle Scholar
  39. 39.
    M. Muruganandham, K. Selvam, M.A. Swaminathan, J. Hazard. Mater. 144, 316–322 (2007)CrossRefGoogle Scholar
  40. 40.
    N. Daneshvar, S. Aber, M.S. Seyed Dorraji, A.R. Khataee, M.H. Rasoulifard, Int. J. Chem. Nucl. Metall. Mater. Eng. 1, 66–70 (2007)Google Scholar
  41. 41.
    Jia Liu, Haotian Yang, Weiwei Tan, Xiaowen Zhou, Yuan Lin, Electrochim. Acta 56, 396–400 (2010)CrossRefGoogle Scholar
  42. 42.
    Yu. Zhang, Lingling Wang, Bingkun Liu, Jiali Zhai, Haimei Fan, Dejun Wang Yanhong Lin Tengfeng Xie, Electrochim. Acta 56, 6517–6523 (2011)CrossRefGoogle Scholar
  43. 43.
    T. Matsunaga, R. Tomada, T. Nakajima, H. Wake, FEMS Microbiol. Lett. 29, 211–214 (1998)CrossRefGoogle Scholar
  44. 44.
    M.S.A. Shah, M. Nag, T. Kalagara, S. Singh, S.V. Manorama, Chem. Mater. 20, 2455–2460 (2008)CrossRefGoogle Scholar
  45. 45.
    H. Zhang, Q. Li, Y. Lu, J. Chem. Technol. Biotechnol. 80, 285–290 (2005)CrossRefGoogle Scholar
  46. 46.
    D. Brindha et al., Adv. Appl. Sci. Res. 6, 45–48 (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jayaraman Kamalakkannan
    • 1
  • Vijayaragavan Lenin Chandraboss
    • 1
  • Selvaraj Prabha
    • 1
  • Bala Karthikeyan
    • 1
  • Sambandam Senthilvelan
    • 1
  1. 1.Department of ChemistryAnnamalai UniversityAnnamalainagarIndia

Personalised recommendations