Influence of Bi concentration on structural and optical properties of Bi doped p-type ZnO thin films prepared by sol–gel method

  • Brijesh Kumar Singh
  • Shweta Tripathi


This paper reports the growth of stable p-type ZnO film on p-Si substrate. The bismuth doped ZnO (Bi doped ZnO) thin films have been grown by sol–gel spin coating method followed by thermal annealing. The structural studies performed exhibits that Bi doped ZnO thin film possess highly crystalline nature with c-axis orientation. The electrical conductivity of the deposited film has been determined by Seeback voltage measurement and its stability has been studied as function of time. Interestingly it was observed that ZnO thin films retain p-type nature even after 150 days. Further, optical band gap and reflectance of Bi doped ZnO films have also been determined with varying concentrations of Bi using the data taken by ellipsometer.


Bismuth Nitrate Bismuth Nitrate Pentahydrate Transparent Conducting Attribute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Authors gratefully acknowledge Centre for Interdisciplinary Research (CIR), MNNIT Allahabad for providing characterization facilities.


  1. 1.
    D.C. Look, Mater. Sci. Eng. B 80, 383 (2001)CrossRefGoogle Scholar
  2. 2.
    C. Jagadish, S.J. Pearton (eds.), in Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications (Elsevier, Oxford, 2006)Google Scholar
  3. 3.
    D.G. Thomas, J. Phys. Chem. Solids 15, 86 (1960)CrossRefGoogle Scholar
  4. 4.
    D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Appl. Phys. Lett. 70, 2230 (1997)CrossRefGoogle Scholar
  5. 5.
    Z.L. Pei, C. Sun, M.H. Tan, J.Q. Xiao, D.H. Guan, R.F. Huang, L.S. Wen, J. Appl. Phys. 90, 3432 (2001)CrossRefGoogle Scholar
  6. 6.
    J. Xu, J. Han, Y. Zhang, Y. Sun, B. Xie, Sens. Actuators B Chem. 132, 334 (2008)CrossRefGoogle Scholar
  7. 7.
    R. Gopikrishnan, K. Zhang, P. Ravichandran, S. Baluchamy, V. Ramesh, S. Biradar, P. Ramesh, J. Pradhan, J.C. Hall, A.K. Pradhan, Nano-Micro Lett. 2, 31 (2010)CrossRefGoogle Scholar
  8. 8.
    S. Gulia, R. Kakkar, Adv. Mat. Lett 4, 876 (2013)Google Scholar
  9. 9.
    D.C. Look, D.C. Reynolds, C.W. Litton, R.L. Jones, D.B. Eason, G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002)CrossRefGoogle Scholar
  10. 10.
    A. Janotti, C.G. Van de Walle, J. Cryst. Growth 287, 58 (2006)CrossRefGoogle Scholar
  11. 11.
    C.H. Park, S.B. Zhang, Su-Huai Wei, Phys. Rev. B 66, 073202 (2002)CrossRefGoogle Scholar
  12. 12.
    E.C. Lee, K.J. Chang, Phys. Rev. B 70, 115210 (2004)CrossRefGoogle Scholar
  13. 13.
    J.W. Lee, N.G. Subramaniam, J.C. Lee, T.W. Kang, EPL (Europhysics Letters) 95, 47002 (2011)CrossRefGoogle Scholar
  14. 14.
    F. Xiu, J. Xu, P.C. Joshi, C.A. Bridges, M.P. Paranthaman, in A Review, eds. by M.P. Paranthaman, W. Wong-Ng, R.N. Bhattacharya. Semiconductor Materials for Solar Photovoltaic Cells (Springer International Publishing, 2016), pp. 105–140Google Scholar
  15. 15.
    J.R. Duclere, R. O’Haire, A. Meaney, K. Johnston, I. Reid, G. Tobin, J.P. Mosnier, M. Guilloux-Viry, E. McGlynn, M.O. Henry, J. Mater. Sci. Mater. Electron. 16, 421 (2005)CrossRefGoogle Scholar
  16. 16.
    B.K. Singh, Shweta Tripathi, Superlattices Microstruct. 85, 697 (2015)CrossRefGoogle Scholar
  17. 17.
    Y.H. Huang, W.H. Lan, M.C. Shih, C.Y. Lee, Y.W. Wang, W.H. Hsu, in 2014 International Symposium on Next-Generation Electronics (ISNE), (IEEE, 2014), pp. 1–2Google Scholar
  18. 18.
    B.K. Singh, S. Tripathi, Supperlattices Microstruct. 85, 697 (2015)CrossRefGoogle Scholar
  19. 19.
    S.N. Bai, T.Y. Tseng, J. Appl. Phys. 74, 695 (1993)CrossRefGoogle Scholar
  20. 20.
    X. Xiu, L.J. Mandalapu, Z. Yang, J.L. Liu, G.F. Liu, J.A. Yarmoff, Appl. Phys. Lett. 89, 052103 (2006)CrossRefGoogle Scholar
  21. 21.
    J.W. Lee, N.G. Subramaniam, J.C. Lee, T.W. Kang, EPL (Europhysics Letters) 95, 47002 (2011)CrossRefGoogle Scholar
  22. 22.
    The International Centre for Diffraction Data, Zincite JCPDS no. 036-1451Google Scholar
  23. 23.
    M. Jiang, X. Liu, J. Mater. Sci. Mater. Electron. 20, 972 (2009)CrossRefGoogle Scholar
  24. 24.
    Z. Jiwei, Z. Liangying, Y. Xi, Ceram. Int. 26, 883 (2000)CrossRefGoogle Scholar
  25. 25.
    D.J. Goyal, C. Agashe, M.G. Takwale, V.G. Bhide, S. Mahamuni, S.K. Kulkarni, J. Mater. Res. 8, 1052 (1993)CrossRefGoogle Scholar
  26. 26.
    W.H. Bragg, W.L. Bragg, Proc. R. Soc. Lond. Ser. A 89, 277 (1913)CrossRefGoogle Scholar
  27. 27.
    Y. Caglar, S. Aksoy, S. Ilican, M. Caglar, Superlattices Microstruct. 46, 469 (2009)CrossRefGoogle Scholar
  28. 28.
    B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn. (Addison-Wesley, Reading, 1978), p. 102Google Scholar
  29. 29.
    F. Chouikh, Y. Beggah, M.S. Aida, J. Mater. Sci. Mater. Electron. 22, 499 (2011)CrossRefGoogle Scholar
  30. 30.
    P.M. Kumar, C.S. Kartha, P. Vijayakumar, J. Appl. Phys. 98, 023509 (2005)CrossRefGoogle Scholar
  31. 31.
    K.T.R. Reddy, T.B.S. Reddy, I. Forbes, R.W. Miles, Surf. Coat. Technol. 151, 110 (2002)CrossRefGoogle Scholar
  32. 32.
    E.F. Keskenler, S. Aydın, G. Turgut, S. Dogan, Acta Phys. Pol. A 126, 782 (2014)CrossRefGoogle Scholar
  33. 33.
    H.M. Zhou, D.Q. Yi, Z.M. Yu, L.R. Xiao, J. Li, Thin Solid Films 515, 6909 (2007)CrossRefGoogle Scholar
  34. 34.
    M.F. Zaki, J. Phys. D Appl. Phys. 41, 175404 (2008)CrossRefGoogle Scholar
  35. 35.
    J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall, New Jersey, 1971), p. 88Google Scholar
  36. 36.
    T.S. Moss, Proc. Phys. Soc. Lond. B67, 775 (1954)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringMotilal Nehru National Institute of Technology AllahabadAllahabadIndia

Personalised recommendations