Cu doping effect on the resistive switching behaviors of CoFe2O4 thin films

  • Zhao Xiahou
  • Deok Hyeon Kim
  • Hongtao Xu
  • Ying Li
  • Bo Wha Lee
  • Chunli Liu


Spin-coated CuxCo1−xFe2O4 (x = 0, 0.2, 0.4, 0.6, and 0.8) thin films were prepared on Pt/TiO2/SiO2/Si substrates. Pt/CuxCo1−xFe2O4/Pt structures were fabricated to investigate the effect of Cu doping concentration on the resistive switching behaviors. Structural and morphology characterizations revealed that Cu doping improved the crystallization of the thin films as compared to undoped CoFe2O4. Current–voltage characterization showed that all CuxCo1−xFe2O4 thin films showed unipolar resistance switching, but the distribution range of the set voltage, reset voltage, and resistances were much reduced by Cu doping. Clear improvement in the stability of these parameters started to appear with x = 0.4, and the optimized performance was observed in the Pt/Cu0.6Co0.4Fe2O4/Pt structure. The improved stability of the switching parameters was attributed to the enhancement of hopping process between the Fe ions and the Cu ions in the spinel lattice. Our results indicated that appropriate adjustment of the doping elements in oxides can be a feasible approach in achieving stable resistance switching memory devices.


BiFeO3 CoFe2O4 Resistive Switching CuFe2O4 High Resistance State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (2014R1A1A3049826 and 2014R1A2A1A11051245).


  1. 1.
    R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632–2663 (2009)CrossRefGoogle Scholar
  2. 2.
    S.C. Chae, J.S. Lee, S. Kim, S.B. Lee, S.H. Chang, C. Liu, B. Kahng, H. Shin, D.W. Kim, C.U. Jung, S. Seo, M.J. Lee, T.W. Noh, Adv. Mater. 20, 1154–1159 (2008)CrossRefGoogle Scholar
  3. 3.
    Z.Q. Wang, H.Y. Xu, L. Zhang, X.H. Li, J.G. Ma, X.T. Zhang, Y.C. Liu, Nanoscale 5, 4490–4494 (2013)CrossRefGoogle Scholar
  4. 4.
    C.Y. Liu, J.J. Huang, C.H. Lai, C.H. Lin, Nanoscale Res. Lett. 8, 156 (2013)CrossRefGoogle Scholar
  5. 5.
    F. Kurnia, C. Liu, C.U. Jung, B.W. Lee, Appl. Phys. Lett. 102, 152902 (2013)CrossRefGoogle Scholar
  6. 6.
    M. Mustaqima, P. Yoo, W. Huang, B.W. Lee, C. Liu, Nanoscale Res. Lett. 10, 168 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Wang, Q. Liu, S. Long, W. Wang, Q. Wang, M. Zhang, S. Zhang, Y. Li, Q. Zuo, J. Yang, M. Liu, Nanotechnology 21, 045202 (2010)CrossRefGoogle Scholar
  8. 8.
    H. Zhang, L. Liu, B. Gao, Y. Qiu, X. Liu, J. Lu, R. Han, J. Kang, B. Yu, Appl. Phys. Lett. 98, 042105 (2011)CrossRefGoogle Scholar
  9. 9.
    H. Zhang, B. Gao, B. Sun, G. Chen, L. Zeng, L. Liu, X. Liu, J. Lu, R. Han, J. Kang, B. Yu, Appl. Phys. Lett. 96, 123502 (2010)CrossRefGoogle Scholar
  10. 10.
    J.M. Luo, S.P. Lin, Y. Zheng, B. Wang, Appl. Phys. Lett. 101, 062902 (2012)CrossRefGoogle Scholar
  11. 11.
    Y.H. Do, J.S. Kwak, J.P. Hong, J. Korean Phys. Soc. 55(3), 1009–1012 (2009)Google Scholar
  12. 12.
    M. Li, F. Zhuge, X. Zhu, K. Yin, J. Wang, Y. Liu, C. He, B. Chen, R.W. Li, Nanotechnology 21, 425202 (2010)CrossRefGoogle Scholar
  13. 13.
    M.P. Horvath, J. Magn. Magn. Mater. 215–216, 171–183 (2000)CrossRefGoogle Scholar
  14. 14.
    C. Jin, D.X. Zheng, P. Li, W.B. Mi, H.L. Bai, Appl. Surf. Sci. 26, 678–6813 (2012)CrossRefGoogle Scholar
  15. 15.
    W. Hu, L. Zou, R. Chen, W. Xie, X. Chen, N. Qin, S. Li, G. Yang, D. Bao, Appl. Phys. Lett. 104, 143502 (2014)CrossRefGoogle Scholar
  16. 16.
    U. Lüders, A. Barthélémy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, J.P. Contour, J.F. Bobo, J. Fontcuberta, A. Fert, Adv. Mater. 18, 1733–1736 (2006)CrossRefGoogle Scholar
  17. 17.
    G. Chen, C. Song, C. Chen, S. Gao, F. Zeng, F. Pan, Adv. Mater. 24, 3515–3520 (2012)CrossRefGoogle Scholar
  18. 18.
    D.M. Jnaneshwara, D.N. Avadhani, B.D. Prasad, H. Nagabhushana, B.M. Nagabhushana, S.C. Sharma, S.C. Prashantha, C. Shivakumara, Spectrochim. Acta. A 132, 256–262 (2014)CrossRefGoogle Scholar
  19. 19.
    J.S. Park, J.K. Jeong, H.J. Chung, Y.G. Mo, H.D. Kim, Appl. Phys. Lett. 92, 072104 (2008)CrossRefGoogle Scholar
  20. 20.
    A. Gautam, K. Singh, K. Sen, R.K. Kotnala, M. Singh, Mater. Lett. 65, 591–594 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Hashim, Alimuddin, S. Kumar, B.H. Koo, S.E. Shirsath, E.M. Mohammed, J. Shah, R.K. Kotnala, H.K. Choi, H. Chung, R. Kumar, J. Alloy. Compd. 518, 11–18 (2012)CrossRefGoogle Scholar
  22. 22.
    V. Kalsani, M. Schmitte, Inorg. Chem. 45, 2061–2067 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zhao Xiahou
    • 1
    • 2
  • Deok Hyeon Kim
    • 2
  • Hongtao Xu
    • 1
    • 2
  • Ying Li
    • 1
  • Bo Wha Lee
    • 2
  • Chunli Liu
    • 2
  1. 1.Laboratory for Microstructures, School of Materials Science and EngineeringShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Physics and Oxide Research CenterHankuk University of Foreign StudiesYonginKorea

Personalised recommendations