Skip to main content
Log in

l-Ascorbic acid assisted synthesis and characterization of CoFe2O4 nanoparticles at different annealing temperatures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of annealing temperature on structural, electrical and dielectric properties of cobalt ferrite nanoparticles has been discussed in this work. The cobalt ferrite nanoparticles were prepared by using sol–gel auto-combustion method taking AR grade nitrates of the constituent ions and l-ascorbic acid as a fuel. The as-prepared powder was annealed at temperatures 600, 800 and 1000 °C. The single phase nature of the prepared samples was confirmed through X-ray diffraction analysis. The particle size was estimated through Scherrer’s formula by considering the most intense peak i.e. (311). The particle size found to be in the nanometer range (32, 43 and 48 nm) and increases with increase in annealing temperature. XRD data was used to obtain other structural parameters and their variation with annealing temperature is discussed. Scanning electron microscopy and infra-red spectroscopy techniques were employed to characterize the prepared cobalt ferrite nanoparticles. IR spectra reveal the characteristic features of the spinel ferrite. The grain size obtained from SEM images was found to vary with annealing temperature. The electrical and dielectric behavior of the cobalt ferrite nanoparticles was studied by using two probe technique as a function of temperature and frequency respectively. The DC electrical resistivity varies inversely with temperature. The dielectric constant, dielectric loss and dielectric loss tangent all decreases exponentially with increasing frequency. The DC electrical resistivity decreases with increasing annealing temperature whereas dielectric parameters increase with increasing annealing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sh. Moradi, S.S. Madani, G. Mahmoudzadeh, M. Zhalechin, S.A. Khorrami, Int. J. Nano Dimens. 3, 141 (2012)

    Google Scholar 

  2. E.J. Choi, Y. Ahn, K.C. Sond, J. Magn. Magn. Mater. 301, 171 (2006)

    Article  Google Scholar 

  3. N. Sanpo, J. Wang, C.C. Berndt, J. Aust. Ceram. Soc. 49, 84 (2013)

    Google Scholar 

  4. K. Maaz, S. Karim, A. Mashiatullah, J. Liu, M.D. Hou, Y.M. Sun, J.L. Duan, H.J. Yao, D. Mo, Y.F. Chen, Phys. B 404, 3947 (2009)

    Article  Google Scholar 

  5. R. Skomski, J. Phys. Condens. Matter 15, R1 (2003)

    Article  Google Scholar 

  6. A.M. Cojocariu, M. Soroceanu, L. Hrib, V. Nica, O.F. Caltun, Mater. Chem. Phys. 135, 728 (2012)

    Article  Google Scholar 

  7. L. Kumar, M. Kar, Ceram. Int. 38, 4771 (2012)

    Article  Google Scholar 

  8. E.V. Gopalan, I.A. Al-Omari, D.S. Kumar, Y. Yoshida, P.A. Joy, M.R. Anantharaman, Appl. Phys. A 99, 497 (2010)

    Article  Google Scholar 

  9. J. Peng, M. Hojamberdiev, Y. Xu, B. Cao, J. Wang, H. Wu, J. Magn. Magn. Mater. 323, 133 (2011)

    Article  Google Scholar 

  10. Y.M. Abbas, S.A. Mansour, M.H. Ibrahim, S.E. Ali, J. Magn. Magn. Mater. 323, 2748 (2011)

    Article  Google Scholar 

  11. M. Han, C.R. Vestal, Z.J. Zhang, J. Phys. Chem. B 108, 583 (2004)

    Article  Google Scholar 

  12. P. Singh, Chalcogenide Lett. 7, 389 (2010)

    Google Scholar 

  13. P. Hu, D. Pan, X. Wang, J. Tian, J. Wang, S. Zhang, A.A. Volinsky, J. Magn. Magn. Mater. 323, 569 (2011)

    Article  Google Scholar 

  14. H. Zhang, Y.-J. Zhang, W.-H. Wang, G.-H. Wu, J. Magn. Magn. Mater. 323, 1980–1984 (2011)

    Article  Google Scholar 

  15. J.B. Silva, W. de Brito, N.D.S. Mohallem, Mater. Sci. Eng. B 112, 182 (2004)

    Article  Google Scholar 

  16. D.T.T. Nguyet, N.P. Duong, L.T. Hunga, T.D. Hien, T. Satoh, J. Alloys Compd. 509, 6621 (2011)

    Article  Google Scholar 

  17. R.G. Kharabe, R.S. Devan, C.M. Kanamadi, B.K. Chougule, Smart Mater. Struct. 15, 36 (2006)

    Article  Google Scholar 

  18. P. Samoila, T. Slatineanu, P. Postolache, A.R. Iordan, M.N. Palamaru, Mater. Chem. Phys. 136, 241 (2012)

    Article  Google Scholar 

  19. N.M. Deraz, A. Alarifi, J. Anal. Appl. Pyrolysis 94, 41 (2012)

    Article  Google Scholar 

  20. R.C. Kambale, N.R. Adhate, B.K. Chougule, Y.D. Kolekar, J. Alloys Compd. 491, 372 (2010)

    Article  Google Scholar 

  21. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  Google Scholar 

  22. J.C. Maxwell, A treatise on electricity and magnetism (Clarendon Press, Oxford, 1982), p. 328

    Google Scholar 

  23. K.W. Wagner, Ann. Phys. 40, 817 (1913)

    Article  Google Scholar 

  24. N. Singh, A. Agarwal, S. Sanghi, P. Singh, J. Magn. Magn. Mater. 323, 486 (2011)

    Article  Google Scholar 

  25. Q. Xing, Z. Peng, C. Wanga, Z. Fu, X. Fu, Phys. B 407, 388 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok V. Humbe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kale, G.H., Humbe, A.V., Birajdar, S.D. et al. l-Ascorbic acid assisted synthesis and characterization of CoFe2O4 nanoparticles at different annealing temperatures. J Mater Sci: Mater Electron 27, 2151–2158 (2016). https://doi.org/10.1007/s10854-015-4005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-4005-0

Keywords

Navigation