l-Ascorbic acid assisted synthesis and characterization of CoFe2O4 nanoparticles at different annealing temperatures

  • G. H. Kale
  • Ashok V. Humbe
  • Shankar D. Birajdar
  • A. B. Shinde
  • K. M. Jadhav


The effect of annealing temperature on structural, electrical and dielectric properties of cobalt ferrite nanoparticles has been discussed in this work. The cobalt ferrite nanoparticles were prepared by using sol–gel auto-combustion method taking AR grade nitrates of the constituent ions and l-ascorbic acid as a fuel. The as-prepared powder was annealed at temperatures 600, 800 and 1000 °C. The single phase nature of the prepared samples was confirmed through X-ray diffraction analysis. The particle size was estimated through Scherrer’s formula by considering the most intense peak i.e. (311). The particle size found to be in the nanometer range (32, 43 and 48 nm) and increases with increase in annealing temperature. XRD data was used to obtain other structural parameters and their variation with annealing temperature is discussed. Scanning electron microscopy and infra-red spectroscopy techniques were employed to characterize the prepared cobalt ferrite nanoparticles. IR spectra reveal the characteristic features of the spinel ferrite. The grain size obtained from SEM images was found to vary with annealing temperature. The electrical and dielectric behavior of the cobalt ferrite nanoparticles was studied by using two probe technique as a function of temperature and frequency respectively. The DC electrical resistivity varies inversely with temperature. The dielectric constant, dielectric loss and dielectric loss tangent all decreases exponentially with increasing frequency. The DC electrical resistivity decreases with increasing annealing temperature whereas dielectric parameters increase with increasing annealing temperature.


Ferrite Dielectric Constant Dielectric Loss CoFe2O4 Increase Annealing Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sh. Moradi, S.S. Madani, G. Mahmoudzadeh, M. Zhalechin, S.A. Khorrami, Int. J. Nano Dimens. 3, 141 (2012)Google Scholar
  2. 2.
    E.J. Choi, Y. Ahn, K.C. Sond, J. Magn. Magn. Mater. 301, 171 (2006)CrossRefGoogle Scholar
  3. 3.
    N. Sanpo, J. Wang, C.C. Berndt, J. Aust. Ceram. Soc. 49, 84 (2013)Google Scholar
  4. 4.
    K. Maaz, S. Karim, A. Mashiatullah, J. Liu, M.D. Hou, Y.M. Sun, J.L. Duan, H.J. Yao, D. Mo, Y.F. Chen, Phys. B 404, 3947 (2009)CrossRefGoogle Scholar
  5. 5.
    R. Skomski, J. Phys. Condens. Matter 15, R1 (2003)CrossRefGoogle Scholar
  6. 6.
    A.M. Cojocariu, M. Soroceanu, L. Hrib, V. Nica, O.F. Caltun, Mater. Chem. Phys. 135, 728 (2012)CrossRefGoogle Scholar
  7. 7.
    L. Kumar, M. Kar, Ceram. Int. 38, 4771 (2012)CrossRefGoogle Scholar
  8. 8.
    E.V. Gopalan, I.A. Al-Omari, D.S. Kumar, Y. Yoshida, P.A. Joy, M.R. Anantharaman, Appl. Phys. A 99, 497 (2010)CrossRefGoogle Scholar
  9. 9.
    J. Peng, M. Hojamberdiev, Y. Xu, B. Cao, J. Wang, H. Wu, J. Magn. Magn. Mater. 323, 133 (2011)CrossRefGoogle Scholar
  10. 10.
    Y.M. Abbas, S.A. Mansour, M.H. Ibrahim, S.E. Ali, J. Magn. Magn. Mater. 323, 2748 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Han, C.R. Vestal, Z.J. Zhang, J. Phys. Chem. B 108, 583 (2004)CrossRefGoogle Scholar
  12. 12.
    P. Singh, Chalcogenide Lett. 7, 389 (2010)Google Scholar
  13. 13.
    P. Hu, D. Pan, X. Wang, J. Tian, J. Wang, S. Zhang, A.A. Volinsky, J. Magn. Magn. Mater. 323, 569 (2011)CrossRefGoogle Scholar
  14. 14.
    H. Zhang, Y.-J. Zhang, W.-H. Wang, G.-H. Wu, J. Magn. Magn. Mater. 323, 1980–1984 (2011)CrossRefGoogle Scholar
  15. 15.
    J.B. Silva, W. de Brito, N.D.S. Mohallem, Mater. Sci. Eng. B 112, 182 (2004)CrossRefGoogle Scholar
  16. 16.
    D.T.T. Nguyet, N.P. Duong, L.T. Hunga, T.D. Hien, T. Satoh, J. Alloys Compd. 509, 6621 (2011)CrossRefGoogle Scholar
  17. 17.
    R.G. Kharabe, R.S. Devan, C.M. Kanamadi, B.K. Chougule, Smart Mater. Struct. 15, 36 (2006)CrossRefGoogle Scholar
  18. 18.
    P. Samoila, T. Slatineanu, P. Postolache, A.R. Iordan, M.N. Palamaru, Mater. Chem. Phys. 136, 241 (2012)CrossRefGoogle Scholar
  19. 19.
    N.M. Deraz, A. Alarifi, J. Anal. Appl. Pyrolysis 94, 41 (2012)CrossRefGoogle Scholar
  20. 20.
    R.C. Kambale, N.R. Adhate, B.K. Chougule, Y.D. Kolekar, J. Alloys Compd. 491, 372 (2010)CrossRefGoogle Scholar
  21. 21.
    C.G. Koops, Phys. Rev. 83, 121 (1951)CrossRefGoogle Scholar
  22. 22.
    J.C. Maxwell, A treatise on electricity and magnetism (Clarendon Press, Oxford, 1982), p. 328Google Scholar
  23. 23.
    K.W. Wagner, Ann. Phys. 40, 817 (1913)CrossRefGoogle Scholar
  24. 24.
    N. Singh, A. Agarwal, S. Sanghi, P. Singh, J. Magn. Magn. Mater. 323, 486 (2011)CrossRefGoogle Scholar
  25. 25.
    Q. Xing, Z. Peng, C. Wanga, Z. Fu, X. Fu, Phys. B 407, 388 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • G. H. Kale
    • 1
  • Ashok V. Humbe
    • 2
  • Shankar D. Birajdar
    • 2
  • A. B. Shinde
    • 3
  • K. M. Jadhav
    • 2
  1. 1.Yashwantrao Chavan MahavidyalayaTuljapur, OsmanabadIndia
  2. 2.Department of PhysicsDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia
  3. 3.Department of PhysicsAbasaheb Garware CollegePuneIndia

Personalised recommendations