Enhanced acetone sensing properties of Co3O4 nanosheets with highly exposed (111) planes

  • Yanli Lin
  • Huiming Ji
  • Zhurui Shen
  • Qianqian Jia
  • Dahao Wang


Co3O4 nanosheets (NS-Co3O4), nanorods (NR-Co3O4), and nanofibers (NF-Co3O4) were fabricated via hydrothermal and electrospinning methods, respectively. Single crystal sheet-like Co3O4 was mainly exposed of (111) planes with a specific surface area of 39.2 m2/g, while NR-Co3O4 and NF-Co3O4 were polycrystalline with specific surface areas of 53.1 and 67.1 m2/g, respectively. Gas sensing response (R g /R a ) of NS-Co3O4 to 100 ppm acetone was ~6.1 at 160 °C, which was much higher than those of NR-Co3O4 (~4.0), NF-Co3O4 (~2.7) and other reported Co3O4 nanostructures. The response and recovery time of NS-Co3O4 to 100 ppm acetone were 98 and 7 s, respectively. NS-Co3O4 had the smallest specific surface area, but exhibited the best acetone sensing properties, which was possibly due to their high exposure of (111) planes. There were only Co2+ cations on (111) planes, which contained a lot of dangling bonds. Oxygen species in air could be adsorbed more easily on (111) planes than other randomly exposed planes. Thus, thicker holes accumulation layer formed and better gas sensing properties were obtained. This study has provided a basic understanding of the relationship between Co3O4 nanocrystals with exposed certain planes and their gas sensing properties.


Co3O4 Crystal Plane Small Specific Surface Area Adsorbed Oxygen Species Optimum Operating Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful for financial support from the National Natural Science Foundation of China (Grant No. 51172157).


  1. 1.
    W. Cao, Y. Duan, Breath analysis: potential for clinical diagnosis and exposure assessment. Clin. Chem. 52, 800–811 (2006)CrossRefGoogle Scholar
  2. 2.
    S.-J. Choi, I. Lee, B.-H. Jang, D.-Y. Youn, W.-H. Ryu, C.O. Park, I.-D. Kim, Selective diagnosis of diabetes using Pt-functionalized WO3 hemitube networks as a sensing layer of acetone in exhaled breath. Anal. Chem. 85, 1792–1796 (2013)CrossRefGoogle Scholar
  3. 3.
    L. Wang, A. Teleki, S.E. Pratsinis, P.I. Gouma, Ferroelectric WO3 nanoparticles for acetone selective detection. Chem. Mater. 20, 4794–4796 (2008)CrossRefGoogle Scholar
  4. 4.
    Q. Jia, H. Ji, Y. Zhang, Y. Chen, X. Sun, Z. Jin, Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application. J. Hazard. Mater. 276, 262–270 (2014)CrossRefGoogle Scholar
  5. 5.
    S. Salehi, E. Nikan, A.A. Khodadadi, Y. Mortazavi, Highly sensitive carbon nanotubes-SnO2 nanocomposite sensor for acetone detection in diabetes mellitus breath. Sens. Actuators B Chem. 205, 261–267 (2014)CrossRefGoogle Scholar
  6. 6.
    B. Bhowmik, A. Hazra, K. Dutta, P. Bhattacharyya, Repeatability and stability of room-temperature acetone sensor based on TiO2 nanotubes: influence of stoichiometry variation. IEEE Trans. Dev. Mater. Rel. 14, 961–967 (2014)CrossRefGoogle Scholar
  7. 7.
    X. Bai, H. Ji, P. Gao, Y. Zhang, X. Sun, Morphology, phase structure and acetone sensitive properties of copper-doped tungsten oxide sensors. Sens. Actuators B Chem. 193, 100–106 (2014)CrossRefGoogle Scholar
  8. 8.
    P. Gao, H. Ji, Y. Zhou, X. Li, Selective acetone gas sensors using porous WO3–Cr2O3 thin films prepared by sol-gel method. Thin Solid Films 520, 3100–3106 (2012)CrossRefGoogle Scholar
  9. 9.
    S. Fujita, S. Suzuki, T. Mori, Preparation of high-performance Co3O4 catalyst for hydrocarbon combustion from Co-containing hydrogarnet. Catal. Lett. 86, 139–144 (2003)CrossRefGoogle Scholar
  10. 10.
    W.Y. Li, L.N. Xu, J. Chen, Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 15, 851–857 (2005)CrossRefGoogle Scholar
  11. 11.
    X.W. Lou, D. Deng, J.Y. Lee, J. Feng, L.A. Archer, Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium–ion battery electrodes. Adv. Mater. 20, 258–262 (2008)CrossRefGoogle Scholar
  12. 12.
    P. Dutta, M. Seehra, S. Thota, J. Kumar, A comparative study of the magnetic properties of bulk and nanocrystalline Co3O4. J. Phys. Condens. Matter 20, 015218 (2008)CrossRefGoogle Scholar
  13. 13.
    C.C. Li, X.M. Yin, T.H. Wang, H.C. Zeng, Morphogenesis of highly uniform CoCO3 submicrometer crystals and their conversion to mesoporous Co3O4 for gas-sensing applications. Chem. Mater. 21, 4984–4992 (2009)CrossRefGoogle Scholar
  14. 14.
    A.-M. Cao, J.-S. Hu, H.-P. Liang, W.-G. Song, L.-J. Wan, X.-L. He, X.-G. Gao, S.-H. Xia, Hierarchically structured cobalt oxide Co3O4: the morphology control and its potential in sensors. J. Phys. Chem. B 110, 15858–15863 (2006)CrossRefGoogle Scholar
  15. 15.
    G. Bai, H. Dai, J. Deng, Y. Liu, F. Wang, Z. Zhao, W. Qiu, C.T. Au, Porous Co3O4 nanowires and nanorods: highly active catalysts for the combustion of toluene. Appl. Catal. A-Gen. 450, 42–49 (2013)CrossRefGoogle Scholar
  16. 16.
    J.S. Chen, T. Zhu, Q.H. Hu, J. Gao, F. Su, S.Z. Qiao, X.W. Lou, Shape-controlled synthesis of cobalt-based nanocubes, nanodiscs, and nanoflowers and their comparative lithium-storage properties. ACS Appl. Mater. Interfaces 2, 3628–3635 (2010)CrossRefGoogle Scholar
  17. 17.
    J. Guo, L. Chen, X. Zhang, H. Chen, Porous Co3O4 nanorods as anode for lithium-ion battery with excellent electrochemical performance. J. Solid State Chem. 213, 193–197 (2014)CrossRefGoogle Scholar
  18. 18.
    L.-L. Xing, Z.-H. Chen, X.-Y. Xue, Controllable synthesis Co3O4 nanorods and nanobelts and their excellent lithium storage performance. Solid State Sci. 32, 88–93 (2014)CrossRefGoogle Scholar
  19. 19.
    L. Zhan, S. Wang, L.-X. Ding, Z. Li, H. Wang, Grass-like Co3O4 nanowire arrays anode with high rate capability and excellent cycling stability for lithium-ion batteries. Electrochim. Acta 135, 35–41 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Wang, C. Xiao, P. Wang, Z. Li, B. Xiao, R. Zhao, T. Yang, M. Zhang, Co3O4 hollow nanotubes: facile synthesis and gas sensing properties. Mater. Lett. 137, 289–292 (2014)CrossRefGoogle Scholar
  21. 21.
    R.B. Rakhi, W. Chen, M.N. Hedhili, D. Cha, H.N. Alshareef, Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration. ACS Appl. Mater. Interfaces 6, 4196–4206 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. Xiao, S. Liu, F. Li, A. Zhang, J. Zhao, S. Fang, D. Jia, 3D Hierarchical Co3O4 twin-spheres with an urchin-like structure: large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors. Adv. Funct. Mater. 22, 4052–4059 (2012)CrossRefGoogle Scholar
  23. 23.
    H.B. Jiang, Q. Cuan, C.Z. Wen, J. Xing, D. Wu, X.-Q. Gong, C. Li, H.G. Yang, Anatase TiO2 crystals with exposed high-index facets. Angew. Chem-Int. Edit. 50, 3764–3768 (2011)CrossRefGoogle Scholar
  24. 24.
    Z.-Y. Jiang, Q. Kuang, Z.-X. Xie, L.-S. Zheng, Syntheses and properties of micro/nanostructured crystallites with high-energy surfaces. Adv. Funct. Mater. 20, 3634–3645 (2010)CrossRefGoogle Scholar
  25. 25.
    G. Li, T. Hu, G. Pan, T. Yan, X. Gao, H. Zhu, Morphology-function relationship of ZnO: polar planes, oxygen vacancies, and vctivity. J. Phys. Chem. C 112, 11859–11864 (2008)CrossRefGoogle Scholar
  26. 26.
    Q.Q. Jia, H.M. Ji, D.H. Wang, X. Bai, X.H. Sun, Z.G. Jin, Exposed facets induced enhanced acetone selective sensing property of nanostructured tungsten oxide. J. Mater. Chem. A. 2, 13602–13611 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Zhu, S. Wang, S. Xie, H. Li, Hexagonal single crystal growth of WO3 nanorods along a [110] axis with enhanced adsorption capacity. Chem. Commun. 47, 4403–4405 (2011)CrossRefGoogle Scholar
  28. 28.
    A. Gurlo, Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3, 154–165 (2011)CrossRefGoogle Scholar
  29. 29.
    H.Q. Sun, H.M. Ang, M.O. Tade, S.B. Wang, Co3O4 nanocrystals with predominantly exposed facets: synthesis, environmental and energy applications. J. Mater. Chem. A 1, 14427–14442 (2013)CrossRefGoogle Scholar
  30. 30.
    L. Hu, Q. Peng, Y. Li, Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 130, 16136–16137 (2008)CrossRefGoogle Scholar
  31. 31.
    X. Xie, Y. Li, Z.-Q. Liu, M. Haruta, W. Shen, Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458, 746–749 (2009)CrossRefGoogle Scholar
  32. 32.
    L. Hu, K. Sun, Q. Peng, B. Xu, Y. Li, Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res. 3, 363–368 (2010)CrossRefGoogle Scholar
  33. 33.
    X.F. Tang, J.H. Li, J.M. Hao, Synthesis and characterization of spinel Co3O4 octahedra enclosed by the 111 facets. Mater. Res. Bull. 43, 2912–2918 (2008)CrossRefGoogle Scholar
  34. 34.
    Y. Teng, Y. Kusano, M. Azuma, M. Haruta, Y. Shimakawa, Morphology effects of Co3O4 nanocrystals catalyzing CO oxidation in a dry reactant gas stream. Catal. Sci. Technol. 1, 920–922 (2011)CrossRefGoogle Scholar
  35. 35.
    N. Venugopal, A.K. Pullur, W.S. Kim, H.P. Ha, Hollow Co3O4 mesoporous structures with predominantly exposed (111) planes for CO oxidation. Catal. Lett. 144, 2151–2156 (2014)CrossRefGoogle Scholar
  36. 36.
    K.-I. Choi, H.-R. Kim, K.-M. Kim, D. Liu, G. Cao, J.-H. Lee, C2H5OH sensing characteristics of various Co3O4 nanostructures prepared by solvothermal reaction. Sens. Actuators B Chem. 146, 183–189 (2010)CrossRefGoogle Scholar
  37. 37.
    P. Zhang, J. Wang, X. Lv, H. Zhang, X. Sun, Facile synthesis of Cr-decorated hexagonal Co3O4 nanosheets for ultrasensitive ethanol detection. Nanotechnology 26, 275501 (2015)CrossRefGoogle Scholar
  38. 38.
    A.F. Liu, H.W. Che, J.B. Mu, Y.M. Bai, S.F. Zhao, J.X. Hou, X.L. Zhang, Facile synthesis of 3D hierarchical dandelion-like Co3O4 microspheres for superior ethanol gas sensing properties. Chem. Lett. 43, 1447–1449 (2014)CrossRefGoogle Scholar
  39. 39.
    L. Wang, J. Deng, Z. Lou, T. Zhang, Nanoparticles-assembled Co3O4 nanorods p-type nanomaterials: one-pot synthesis and toluene-sensing properties. Sens. Actuators B Chem. 201, 1–6 (2014)CrossRefGoogle Scholar
  40. 40.
    S.J. Hwang, K.I. Choi, J.W. Yoon, Y.C. Kang, J.H. Lee, Pure and palladium-loaded Co3O4 hollow hierarchical nanostructures with giant and ultraselective chemiresistivity to xylene and toluene. Chem. Eur. J. 21, 5872–5878 (2015)CrossRefGoogle Scholar
  41. 41.
    T. Akamatsu, T. Itoh, N. Izu, W. Shin, K. Sato, Sensing properties of Pd-loaded Co3O4 film for a ppb-level NO gas sensor. Sensors 15, 8109–8120 (2015)CrossRefGoogle Scholar
  42. 42.
    T. Akamatsu, T. Itoh, N. Izu, W. Shin, NO and NO2 sensing properties of WO3 and Co3O4 based gas sensors. Sensors 13, 12467–12481 (2013)CrossRefGoogle Scholar
  43. 43.
    H.W. Che, A.F. Liu, X.L. Zhang, J.X. Hou, J.B. Mu, H.J. He, Two-dimensional nanosheets-assembled flower-like Co3O4 microspheres and their gas sensing performances. NANO 9, 1450071 (2014)CrossRefGoogle Scholar
  44. 44.
    Z. Wen, L. Zhu, Y. Li, Z. Zhang, Z. Ye, Mesoporous Co3O4 nanoneedle arrays for high-performance gas sensor. Sens. Actuators B Chem. 203, 873–879 (2014)CrossRefGoogle Scholar
  45. 45.
    T.S. Sreeremya, A. Krishnan, K.C. Remani, K.R. Patil, D.F. Brougham, S. Ghosh, Shape selective oriented cerium oxide nanocrystals permit assessment of the effect of the exposed facets on catalytic activity and oxygen storage capacity. ACS Appl. Mater. Interfaces 7, 8545–8555 (2015)CrossRefGoogle Scholar
  46. 46.
    S. Navaladian, B. Viswanathan, T.K. Varadarajan, R.P. Viswanath, A rapid synthesis of oriented palladium nanoparticles by UV irradiation. Nanoscale Res. Lett. 4, 181–186 (2008)CrossRefGoogle Scholar
  47. 47.
    B.Y. Geng, F.M. Zhan, C.H. Fang, N. Yu, A facile coordination compound precursor route to controlled synthesis of Co3O4 nanostructures and their room-temperature gas sensing properties. J. Mater. Chem. 18, 4977–4984 (2008)CrossRefGoogle Scholar
  48. 48.
    L.L. Li, Y. Chu, Y. Liu, J.L. Song, D. Wang, X.W. Du, A facile hydrothermal route to synthesize novel Co3O4 nanoplates. Mater. Lett. 62, 1507–1510 (2008)CrossRefGoogle Scholar
  49. 49.
    J.Q. Yu, Akihiko Kudo. Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Adv. Funct. Mater. 16, 2163–2169 (2006)CrossRefGoogle Scholar
  50. 50.
    J.H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens. Actuators B Chem. 140, 319–336 (2009)CrossRefGoogle Scholar
  51. 51.
    J.M. Xu, J. Zhang, B.B. Wang, F. Liu, Shape-regulated synthesis of cobalt oxide and its gas-sensing property. J. Alloys Compd. 619, 361–367 (2015)CrossRefGoogle Scholar
  52. 52.
    S. Liu, Z. Wang, H. Zhao, T. Fei, T. Zhang, Ordered mesoporous Co3O4 for high-performance toluene sensing. Sens. Actuators B Chem. 197, 342–349 (2014)CrossRefGoogle Scholar
  53. 53.
    Y. Lv, W. Zhan, Y. He, Y. Wang, X. Kong, Q. Kuang, Z. Xie, L. Zheng, MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. Acs Appl. Mater. Interfaces 6, 4186–4195 (2014)CrossRefGoogle Scholar
  54. 54.
    J. Deng, R. Zhang, L. Wang, Z. Lou, T. Zhang, Enhanced sensing performance of the Co3O4 hierarchical nanorods to NH3 gas. Sens. Actuators B Chem. 209, 449–455 (2015)CrossRefGoogle Scholar
  55. 55.
    J. Park, X. Shen, G. Wang, Solvothermal synthesis and gas-sensing performance of Co3O4 hollow nanospheres. Sens. Actuators B Chem. 136, 494–498 (2009)CrossRefGoogle Scholar
  56. 56.
    H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B Chem. 192, 607–627 (2014)CrossRefGoogle Scholar
  57. 57.
    S.C. Petitto, E.M. Marsh, G.A. Carson, M.A. Langell, Cobalt oxide surface chemistry: the interaction of CoO (100), Co3O4 (110) and Co3O4 (111) with oxygen and water. J. Mol. Catal. A -Chem. 281, 49–58 (2008)CrossRefGoogle Scholar
  58. 58.
    J. Jansson, A. Palmqvist, E. Fridell, M. Skoglundh, L. Österlund, P. Thormählen, V. Langer, On the catalytic activity of Co3O4 in low-temperature CO oxidation. J. Catal. 211, 387–397 (2002)CrossRefGoogle Scholar
  59. 59.
    K. Omata, T. Takada, S. Kasahara, M. Yamada, Active site of substituted cobalt spinel oxide for selective oxidation of CO/H2. Part II. Appl. Catal. A-Gen. 146, 255–267 (1996)CrossRefGoogle Scholar
  60. 60.
    X. Han, L. Li, C. Wang, Synthesis of tin dioxide nanooctahedra with exposed high-index 332 facets and enhanced selective gas sensing properties. Chem. Asian J. 7, 1572–1575 (2012)CrossRefGoogle Scholar
  61. 61.
    X. Han, M. Jin, S. Xie, Q. Kuang, Z. Jiang, Y. Jiang, Z. Xie, L. Zheng, Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy 221 facets and enhanced gas-sensing properties. Angew. Chem. 121, 9344–9347 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yanli Lin
    • 1
  • Huiming Ji
    • 1
  • Zhurui Shen
    • 1
  • Qianqian Jia
    • 1
  • Dahao Wang
    • 1
  1. 1.Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and EngineeringTianjin UniversityTianjinChina

Personalised recommendations