Skip to main content
Log in

Enhanced acetone sensing properties of Co3O4 nanosheets with highly exposed (111) planes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Co3O4 nanosheets (NS-Co3O4), nanorods (NR-Co3O4), and nanofibers (NF-Co3O4) were fabricated via hydrothermal and electrospinning methods, respectively. Single crystal sheet-like Co3O4 was mainly exposed of (111) planes with a specific surface area of 39.2 m2/g, while NR-Co3O4 and NF-Co3O4 were polycrystalline with specific surface areas of 53.1 and 67.1 m2/g, respectively. Gas sensing response (R g /R a ) of NS-Co3O4 to 100 ppm acetone was ~6.1 at 160 °C, which was much higher than those of NR-Co3O4 (~4.0), NF-Co3O4 (~2.7) and other reported Co3O4 nanostructures. The response and recovery time of NS-Co3O4 to 100 ppm acetone were 98 and 7 s, respectively. NS-Co3O4 had the smallest specific surface area, but exhibited the best acetone sensing properties, which was possibly due to their high exposure of (111) planes. There were only Co2+ cations on (111) planes, which contained a lot of dangling bonds. Oxygen species in air could be adsorbed more easily on (111) planes than other randomly exposed planes. Thus, thicker holes accumulation layer formed and better gas sensing properties were obtained. This study has provided a basic understanding of the relationship between Co3O4 nanocrystals with exposed certain planes and their gas sensing properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W. Cao, Y. Duan, Breath analysis: potential for clinical diagnosis and exposure assessment. Clin. Chem. 52, 800–811 (2006)

    Article  Google Scholar 

  2. S.-J. Choi, I. Lee, B.-H. Jang, D.-Y. Youn, W.-H. Ryu, C.O. Park, I.-D. Kim, Selective diagnosis of diabetes using Pt-functionalized WO3 hemitube networks as a sensing layer of acetone in exhaled breath. Anal. Chem. 85, 1792–1796 (2013)

    Article  Google Scholar 

  3. L. Wang, A. Teleki, S.E. Pratsinis, P.I. Gouma, Ferroelectric WO3 nanoparticles for acetone selective detection. Chem. Mater. 20, 4794–4796 (2008)

    Article  Google Scholar 

  4. Q. Jia, H. Ji, Y. Zhang, Y. Chen, X. Sun, Z. Jin, Rapid and selective detection of acetone using hierarchical ZnO gas sensor for hazardous odor markers application. J. Hazard. Mater. 276, 262–270 (2014)

    Article  Google Scholar 

  5. S. Salehi, E. Nikan, A.A. Khodadadi, Y. Mortazavi, Highly sensitive carbon nanotubes-SnO2 nanocomposite sensor for acetone detection in diabetes mellitus breath. Sens. Actuators B Chem. 205, 261–267 (2014)

    Article  Google Scholar 

  6. B. Bhowmik, A. Hazra, K. Dutta, P. Bhattacharyya, Repeatability and stability of room-temperature acetone sensor based on TiO2 nanotubes: influence of stoichiometry variation. IEEE Trans. Dev. Mater. Rel. 14, 961–967 (2014)

    Article  Google Scholar 

  7. X. Bai, H. Ji, P. Gao, Y. Zhang, X. Sun, Morphology, phase structure and acetone sensitive properties of copper-doped tungsten oxide sensors. Sens. Actuators B Chem. 193, 100–106 (2014)

    Article  Google Scholar 

  8. P. Gao, H. Ji, Y. Zhou, X. Li, Selective acetone gas sensors using porous WO3–Cr2O3 thin films prepared by sol-gel method. Thin Solid Films 520, 3100–3106 (2012)

    Article  Google Scholar 

  9. S. Fujita, S. Suzuki, T. Mori, Preparation of high-performance Co3O4 catalyst for hydrocarbon combustion from Co-containing hydrogarnet. Catal. Lett. 86, 139–144 (2003)

    Article  Google Scholar 

  10. W.Y. Li, L.N. Xu, J. Chen, Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 15, 851–857 (2005)

    Article  Google Scholar 

  11. X.W. Lou, D. Deng, J.Y. Lee, J. Feng, L.A. Archer, Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium–ion battery electrodes. Adv. Mater. 20, 258–262 (2008)

    Article  Google Scholar 

  12. P. Dutta, M. Seehra, S. Thota, J. Kumar, A comparative study of the magnetic properties of bulk and nanocrystalline Co3O4. J. Phys. Condens. Matter 20, 015218 (2008)

    Article  Google Scholar 

  13. C.C. Li, X.M. Yin, T.H. Wang, H.C. Zeng, Morphogenesis of highly uniform CoCO3 submicrometer crystals and their conversion to mesoporous Co3O4 for gas-sensing applications. Chem. Mater. 21, 4984–4992 (2009)

    Article  Google Scholar 

  14. A.-M. Cao, J.-S. Hu, H.-P. Liang, W.-G. Song, L.-J. Wan, X.-L. He, X.-G. Gao, S.-H. Xia, Hierarchically structured cobalt oxide Co3O4: the morphology control and its potential in sensors. J. Phys. Chem. B 110, 15858–15863 (2006)

    Article  Google Scholar 

  15. G. Bai, H. Dai, J. Deng, Y. Liu, F. Wang, Z. Zhao, W. Qiu, C.T. Au, Porous Co3O4 nanowires and nanorods: highly active catalysts for the combustion of toluene. Appl. Catal. A-Gen. 450, 42–49 (2013)

    Article  Google Scholar 

  16. J.S. Chen, T. Zhu, Q.H. Hu, J. Gao, F. Su, S.Z. Qiao, X.W. Lou, Shape-controlled synthesis of cobalt-based nanocubes, nanodiscs, and nanoflowers and their comparative lithium-storage properties. ACS Appl. Mater. Interfaces 2, 3628–3635 (2010)

    Article  Google Scholar 

  17. J. Guo, L. Chen, X. Zhang, H. Chen, Porous Co3O4 nanorods as anode for lithium-ion battery with excellent electrochemical performance. J. Solid State Chem. 213, 193–197 (2014)

    Article  Google Scholar 

  18. L.-L. Xing, Z.-H. Chen, X.-Y. Xue, Controllable synthesis Co3O4 nanorods and nanobelts and their excellent lithium storage performance. Solid State Sci. 32, 88–93 (2014)

    Article  Google Scholar 

  19. L. Zhan, S. Wang, L.-X. Ding, Z. Li, H. Wang, Grass-like Co3O4 nanowire arrays anode with high rate capability and excellent cycling stability for lithium-ion batteries. Electrochim. Acta 135, 35–41 (2014)

    Article  Google Scholar 

  20. S. Wang, C. Xiao, P. Wang, Z. Li, B. Xiao, R. Zhao, T. Yang, M. Zhang, Co3O4 hollow nanotubes: facile synthesis and gas sensing properties. Mater. Lett. 137, 289–292 (2014)

    Article  Google Scholar 

  21. R.B. Rakhi, W. Chen, M.N. Hedhili, D. Cha, H.N. Alshareef, Enhanced rate performance of mesoporous Co3O4 nanosheet supercapacitor electrodes by hydrous RuO2 nanoparticle decoration. ACS Appl. Mater. Interfaces 6, 4196–4206 (2014)

    Article  Google Scholar 

  22. Y. Xiao, S. Liu, F. Li, A. Zhang, J. Zhao, S. Fang, D. Jia, 3D Hierarchical Co3O4 twin-spheres with an urchin-like structure: large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors. Adv. Funct. Mater. 22, 4052–4059 (2012)

    Article  Google Scholar 

  23. H.B. Jiang, Q. Cuan, C.Z. Wen, J. Xing, D. Wu, X.-Q. Gong, C. Li, H.G. Yang, Anatase TiO2 crystals with exposed high-index facets. Angew. Chem-Int. Edit. 50, 3764–3768 (2011)

    Article  Google Scholar 

  24. Z.-Y. Jiang, Q. Kuang, Z.-X. Xie, L.-S. Zheng, Syntheses and properties of micro/nanostructured crystallites with high-energy surfaces. Adv. Funct. Mater. 20, 3634–3645 (2010)

    Article  Google Scholar 

  25. G. Li, T. Hu, G. Pan, T. Yan, X. Gao, H. Zhu, Morphology-function relationship of ZnO: polar planes, oxygen vacancies, and vctivity. J. Phys. Chem. C 112, 11859–11864 (2008)

    Article  Google Scholar 

  26. Q.Q. Jia, H.M. Ji, D.H. Wang, X. Bai, X.H. Sun, Z.G. Jin, Exposed facets induced enhanced acetone selective sensing property of nanostructured tungsten oxide. J. Mater. Chem. A. 2, 13602–13611 (2014)

    Article  Google Scholar 

  27. J. Zhu, S. Wang, S. Xie, H. Li, Hexagonal single crystal growth of WO3 nanorods along a [110] axis with enhanced adsorption capacity. Chem. Commun. 47, 4403–4405 (2011)

    Article  Google Scholar 

  28. A. Gurlo, Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3, 154–165 (2011)

    Article  Google Scholar 

  29. H.Q. Sun, H.M. Ang, M.O. Tade, S.B. Wang, Co3O4 nanocrystals with predominantly exposed facets: synthesis, environmental and energy applications. J. Mater. Chem. A 1, 14427–14442 (2013)

    Article  Google Scholar 

  30. L. Hu, Q. Peng, Y. Li, Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. J. Am. Chem. Soc. 130, 16136–16137 (2008)

    Article  Google Scholar 

  31. X. Xie, Y. Li, Z.-Q. Liu, M. Haruta, W. Shen, Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458, 746–749 (2009)

    Article  Google Scholar 

  32. L. Hu, K. Sun, Q. Peng, B. Xu, Y. Li, Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res. 3, 363–368 (2010)

    Article  Google Scholar 

  33. X.F. Tang, J.H. Li, J.M. Hao, Synthesis and characterization of spinel Co3O4 octahedra enclosed by the 111 facets. Mater. Res. Bull. 43, 2912–2918 (2008)

    Article  Google Scholar 

  34. Y. Teng, Y. Kusano, M. Azuma, M. Haruta, Y. Shimakawa, Morphology effects of Co3O4 nanocrystals catalyzing CO oxidation in a dry reactant gas stream. Catal. Sci. Technol. 1, 920–922 (2011)

    Article  Google Scholar 

  35. N. Venugopal, A.K. Pullur, W.S. Kim, H.P. Ha, Hollow Co3O4 mesoporous structures with predominantly exposed (111) planes for CO oxidation. Catal. Lett. 144, 2151–2156 (2014)

    Article  Google Scholar 

  36. K.-I. Choi, H.-R. Kim, K.-M. Kim, D. Liu, G. Cao, J.-H. Lee, C2H5OH sensing characteristics of various Co3O4 nanostructures prepared by solvothermal reaction. Sens. Actuators B Chem. 146, 183–189 (2010)

    Article  Google Scholar 

  37. P. Zhang, J. Wang, X. Lv, H. Zhang, X. Sun, Facile synthesis of Cr-decorated hexagonal Co3O4 nanosheets for ultrasensitive ethanol detection. Nanotechnology 26, 275501 (2015)

    Article  Google Scholar 

  38. A.F. Liu, H.W. Che, J.B. Mu, Y.M. Bai, S.F. Zhao, J.X. Hou, X.L. Zhang, Facile synthesis of 3D hierarchical dandelion-like Co3O4 microspheres for superior ethanol gas sensing properties. Chem. Lett. 43, 1447–1449 (2014)

    Article  Google Scholar 

  39. L. Wang, J. Deng, Z. Lou, T. Zhang, Nanoparticles-assembled Co3O4 nanorods p-type nanomaterials: one-pot synthesis and toluene-sensing properties. Sens. Actuators B Chem. 201, 1–6 (2014)

    Article  Google Scholar 

  40. S.J. Hwang, K.I. Choi, J.W. Yoon, Y.C. Kang, J.H. Lee, Pure and palladium-loaded Co3O4 hollow hierarchical nanostructures with giant and ultraselective chemiresistivity to xylene and toluene. Chem. Eur. J. 21, 5872–5878 (2015)

    Article  Google Scholar 

  41. T. Akamatsu, T. Itoh, N. Izu, W. Shin, K. Sato, Sensing properties of Pd-loaded Co3O4 film for a ppb-level NO gas sensor. Sensors 15, 8109–8120 (2015)

    Article  Google Scholar 

  42. T. Akamatsu, T. Itoh, N. Izu, W. Shin, NO and NO2 sensing properties of WO3 and Co3O4 based gas sensors. Sensors 13, 12467–12481 (2013)

    Article  Google Scholar 

  43. H.W. Che, A.F. Liu, X.L. Zhang, J.X. Hou, J.B. Mu, H.J. He, Two-dimensional nanosheets-assembled flower-like Co3O4 microspheres and their gas sensing performances. NANO 9, 1450071 (2014)

    Article  Google Scholar 

  44. Z. Wen, L. Zhu, Y. Li, Z. Zhang, Z. Ye, Mesoporous Co3O4 nanoneedle arrays for high-performance gas sensor. Sens. Actuators B Chem. 203, 873–879 (2014)

    Article  Google Scholar 

  45. T.S. Sreeremya, A. Krishnan, K.C. Remani, K.R. Patil, D.F. Brougham, S. Ghosh, Shape selective oriented cerium oxide nanocrystals permit assessment of the effect of the exposed facets on catalytic activity and oxygen storage capacity. ACS Appl. Mater. Interfaces 7, 8545–8555 (2015)

    Article  Google Scholar 

  46. S. Navaladian, B. Viswanathan, T.K. Varadarajan, R.P. Viswanath, A rapid synthesis of oriented palladium nanoparticles by UV irradiation. Nanoscale Res. Lett. 4, 181–186 (2008)

    Article  Google Scholar 

  47. B.Y. Geng, F.M. Zhan, C.H. Fang, N. Yu, A facile coordination compound precursor route to controlled synthesis of Co3O4 nanostructures and their room-temperature gas sensing properties. J. Mater. Chem. 18, 4977–4984 (2008)

    Article  Google Scholar 

  48. L.L. Li, Y. Chu, Y. Liu, J.L. Song, D. Wang, X.W. Du, A facile hydrothermal route to synthesize novel Co3O4 nanoplates. Mater. Lett. 62, 1507–1510 (2008)

    Article  Google Scholar 

  49. J.Q. Yu, Akihiko Kudo. Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Adv. Funct. Mater. 16, 2163–2169 (2006)

    Article  Google Scholar 

  50. J.H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sens. Actuators B Chem. 140, 319–336 (2009)

    Article  Google Scholar 

  51. J.M. Xu, J. Zhang, B.B. Wang, F. Liu, Shape-regulated synthesis of cobalt oxide and its gas-sensing property. J. Alloys Compd. 619, 361–367 (2015)

    Article  Google Scholar 

  52. S. Liu, Z. Wang, H. Zhao, T. Fei, T. Zhang, Ordered mesoporous Co3O4 for high-performance toluene sensing. Sens. Actuators B Chem. 197, 342–349 (2014)

    Article  Google Scholar 

  53. Y. Lv, W. Zhan, Y. He, Y. Wang, X. Kong, Q. Kuang, Z. Xie, L. Zheng, MOF-templated synthesis of porous Co3O4 concave nanocubes with high specific surface area and their gas sensing properties. Acs Appl. Mater. Interfaces 6, 4186–4195 (2014)

    Article  Google Scholar 

  54. J. Deng, R. Zhang, L. Wang, Z. Lou, T. Zhang, Enhanced sensing performance of the Co3O4 hierarchical nanorods to NH3 gas. Sens. Actuators B Chem. 209, 449–455 (2015)

    Article  Google Scholar 

  55. J. Park, X. Shen, G. Wang, Solvothermal synthesis and gas-sensing performance of Co3O4 hollow nanospheres. Sens. Actuators B Chem. 136, 494–498 (2009)

    Article  Google Scholar 

  56. H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B Chem. 192, 607–627 (2014)

    Article  Google Scholar 

  57. S.C. Petitto, E.M. Marsh, G.A. Carson, M.A. Langell, Cobalt oxide surface chemistry: the interaction of CoO (100), Co3O4 (110) and Co3O4 (111) with oxygen and water. J. Mol. Catal. A -Chem. 281, 49–58 (2008)

    Article  Google Scholar 

  58. J. Jansson, A. Palmqvist, E. Fridell, M. Skoglundh, L. Österlund, P. Thormählen, V. Langer, On the catalytic activity of Co3O4 in low-temperature CO oxidation. J. Catal. 211, 387–397 (2002)

    Article  Google Scholar 

  59. K. Omata, T. Takada, S. Kasahara, M. Yamada, Active site of substituted cobalt spinel oxide for selective oxidation of CO/H2. Part II. Appl. Catal. A-Gen. 146, 255–267 (1996)

    Article  Google Scholar 

  60. X. Han, L. Li, C. Wang, Synthesis of tin dioxide nanooctahedra with exposed high-index 332 facets and enhanced selective gas sensing properties. Chem. Asian J. 7, 1572–1575 (2012)

    Article  Google Scholar 

  61. X. Han, M. Jin, S. Xie, Q. Kuang, Z. Jiang, Y. Jiang, Z. Xie, L. Zheng, Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy 221 facets and enhanced gas-sensing properties. Angew. Chem. 121, 9344–9347 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the National Natural Science Foundation of China (Grant No. 51172157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiming Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Ji, H., Shen, Z. et al. Enhanced acetone sensing properties of Co3O4 nanosheets with highly exposed (111) planes. J Mater Sci: Mater Electron 27, 2086–2095 (2016). https://doi.org/10.1007/s10854-015-3995-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3995-y

Keywords

Navigation