Studies on the dispersity of polymethacrylate-grafted carbon black in a non-aqueous medium: the influence of monomer structure



This work aims at studying the structure of monomers on the dispersity of carbon black (CB) in a non-aqueous medium Isopar L. The polymethacrylate-grafted CB nanoparticles were prepared by a redox polymerization method. A series of methacrylate monomers containing alkyl side chain with different length and structure were employed for grafting. The structure and composition of polymethacrylate-grafted CB particles were characterized by a combination of FTIR, TGA and XPS. The particle size distribution, average diameter, contact angle to water and Isopar L and zeta potential of the prepared CB particles were investigated to provide insights into the effects of the monomer structure on the dispersity of modified CB particles in Isopar L. TEM images demonstrated that aggregation of modified CB particles reduced distinctly. The surface of CB particles changed from hydrophilic to hydrophobic after modification. Moreover, it is also found that the more branching or the longer the monomers used in the modification, the narrower the particle size distribution and the higher the zeta potential. The display prototype based on polymethacrylate-grafted carbon black particles showed an improved display performance under the electric field of 0.30 V μm−1. Especially, the EPD based on ethylhexyl methacrylate modified CB particles displayed the highest contrast ratio of 8.36 and minimum response time (527 ms) compared with the ones prepared with other modified particles.


Contact Angle Zeta Potential Carbon Black Atom Transfer Radical Polymerization Carbon Black Particle 



We acknowledge financial support from National High Technology Research and Development Program of China (Grant No. 2013AA032003) and Tianjin Innovation Platform (Grant No. 14TXGCCX00017).


  1. 1.
    X. Meng, T. Wen, S. Sun, R. Zheng, J. Ren, F. Tang, Synthesis and application of carbon-iron oxide microspheres’ black pigments in electrophoretic displays. Nanoscale Res. Lett. 5, 1664–1668 (2010)CrossRefGoogle Scholar
  2. 2.
    N. Hauptman, A. Vesel, V. lvanovski, M.K. Gunde, Electrical conductivity of carbon black pigments. Dyes Pigments 95, 1–7 (2012)CrossRefGoogle Scholar
  3. 3.
    C. Eisermann, C. Damm, B. Winzer, W. Peukert, Stabilization of carbon black particles with Cetyltrimethylammoniumbromide in aqueous media. Powder Technol. 253, 338–346 (2014)CrossRefGoogle Scholar
  4. 4.
    H. Mizukawa, M. Kawaguchi, Effects of perfluorosulfonic acid adsorption on the stability of carbon black suspensions. Langmuir 25, 1984–1987 (2009)Google Scholar
  5. 5.
    E. Sanfins, J. Dairou, S. Hussain, F. Busi, A.F. Chaffotte, F. Rodrigues-Lima, J.-M. Dupret, Carbon black nanoparticles impair acetylation of aromatic amine carcinogens through inactivation ofarylamine N-acetyltransferaseenzymes. ACS Nano 5, 4504–4511 (2011)CrossRefGoogle Scholar
  6. 6.
    T. Liu, S. Jia, T. Kowalewski, K. Matyjaszewski, Grafting poly(n-butyl acrylate) from a functionalized carbon black surface by atom transfer radical polymerization. Langmuir 19, 6342–6345 (2003)CrossRefGoogle Scholar
  7. 7.
    M.N. Patel, P.G. Smith Jr, J. Kim, T.E. Milner, K.P. Johnston, Electrophoretic mobility of concentrated carbon black dispersions in alow-permittivity solvent by optical coherence tomography. J. Colloid Interface Sci. 345, 194–199 (2010)CrossRefGoogle Scholar
  8. 8.
    K.-H. Kuo, Y.-H. Peng, W.-Y. Chiu, T.-M. Don, A novel dispersant for preparation of high loading and photosensitive carbon black dispersion. J. Polym. Sci. A: Polym. Chem. 46, 6185–6197 (2008)CrossRefGoogle Scholar
  9. 9.
    J. Huang, F. Shen, X. Li, X. Zhou, B. Li, R. Xu, C. Wu, Chemical modification of carbon black by a simple non-liquid-phase approach. J. Colloid Interface Sci. 328, 92–97 (2008)CrossRefGoogle Scholar
  10. 10.
    L.-F. Ma, R.-Y. Bao, S.-L. Huang, Z.-Y. Liu, W. Yang, B.-H. Xie, M.-B. Yang, Electrical properties and morphology of carbon black filled PP/EPDM blends: effect of selective distribution of fillers induced by dynamic vulcanization. J. Mater. Sci. 48, 4942–4951 (2013)CrossRefGoogle Scholar
  11. 11.
    L. Zhu, Y. Lu, Y. Wang, L. Zhang, W. Wang, Preparation and characterization of dopamine-decorated hydrophilic carbon black. Appl. Surf. Sci. 258, 5387–5393 (2012)CrossRefGoogle Scholar
  12. 12.
    D. Piasta, C. Bellmann, S. Spange, F. Simon, Endowing carbon black pigment particles with primary amino groups. Langmuir 25, 9071–9077 (2009)CrossRefGoogle Scholar
  13. 13.
    Y.F. Du, P.-W. Shi, Q.-Y. Li, Y.-C. Li, C.-F. Wu, Effect of poly(sodium 4-styrenesulfonate) modified carbon black on the dispersion and properties of waterborne polyurethane nanocomposites. Colloids Surf. A: Physicochem. Eng. Asp. 454, 1–7 (2014)CrossRefGoogle Scholar
  14. 14.
    P.-P. Yin, G. Wu, H.-Z. Chen, M. Wang, Preparation and characterization of carbon black/acrylic copolymer hybrid particles for dual particle electrophoretic display. Synth. Met. 161, 1456–1462 (2011)CrossRefGoogle Scholar
  15. 15.
    H. He, M. Zhong, D. Konkolewicz, K. Yacatto, T. Pappold, G. Sugar, N.E. David, K. Matyjaszewski, Carbon black functionalized with hyperbranched polymers: synthesis, characterization, and application in reversible CO2 capture. J. Mater. Chem. A 1, 6810–6821 (2013)CrossRefGoogle Scholar
  16. 16.
    J.Y. Kim, J.-Y. Oh, K.-S. Suh, Voltage switchable surface-modified carbon black nanoparticles for dual-particle electrophoretic displays. Carbon 66, 168–361 (2014)Google Scholar
  17. 17.
    M. Sansotera, C.L. Bianchi, G. Lecardi, G. Marchionni, P. Metrangolo, G. Resnati, W. Navarrini, Highly hydrophobic carbon black obtained by covalent linkage of perfluorocarbon and perfluoropolyether chains on the carbon surface. Chem. Mater. 21, 4498–4504 (2009)CrossRefGoogle Scholar
  18. 18.
    Q. Yang, L. Wang, W.-D. Xiang, J.-F. Zhou, Q.-H. Tan, Preparation of polymer-grafted carbon black nanoparticles by surface-initiated atom transfer radical polymerization. J. Polym. Sci. A: Polym. Chem. 45, 3451–3459 (2007)CrossRefGoogle Scholar
  19. 19.
    Z. Jiang, J. Jin, C. Xiao, X. Li, Effect of surface modification of carbon black (CB) on the morphology and crystallization of poly(ethylene terephthalate)/CB masterbatch. Colloids Surf. A: Physicochem. Eng. Asp. 395, 105–115 (2012)CrossRefGoogle Scholar
  20. 20.
    H.P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32, 759–769 (1994)CrossRefGoogle Scholar
  21. 21.
    D. Borah, S. Satokawa, S. Kato, T. Kojima, Characterization of chemically modified carbon black for sorption application. Appl. Surf. Sci. 254, 3049–3056 (2008)CrossRefGoogle Scholar
  22. 22.
    X.H. Li, W.H. Guo, Q.L. Zhou, S.A. Xu, C.F. Wu, Non-isothermal crystallization kinetics of poly (ethylene terephthalate)/grafted carbon black composite. Polym. Bull. 59, 685–697 (2007)CrossRefGoogle Scholar
  23. 23.
    J. Kim, S. Garoff, J.L. Anderson, L.J.M. Schlangen, Movement of colloidal particles in two-dimensional electric fields. Langmuir 21, 10941–10947 (2005)CrossRefGoogle Scholar
  24. 24.
    A. Asthana, T. Maitra, R. Büchel, M.K. Tiwari, D. Poulikakos, Multifunctional superhydrophobic polymer/carbon nanocomposites: graphene, carbon nanotubes, or carbon black? ACS Appl. Mater. Interfaces 6, 8859–8867 (2014)CrossRefGoogle Scholar
  25. 25.
    Q. Yang, L. Wang, W. Xiang, J. Zhou, J. Li, Grafting polymers onto carbon black surface by trapping polymer radicals. Polymer 48, 2866–2973 (2007)CrossRefGoogle Scholar
  26. 26.
    M.C.F. Soares, M.M. Viana, Z.L. Schaefer, V.S. Gangoli, Y. Cheng, V. Caliman, M.S. Wong, G.G. Silva, Surface modification of carbon black nanoparticles by dodecylamine: thermal stability and phase transfer in brine medium. Carbon 72, 287–295 (2014)CrossRefGoogle Scholar
  27. 27.
    M.K. Alam, M.T. Islam, M.F. Mina, M.A. Gafur, Structural, mechanical, thermal, and electrical properties of carbon black reinforced polyester resin composites. J. Appl. Polym. Sci. 131, 40421–40431 (2014)Google Scholar
  28. 28.
    E. Enríquez, J.F. Fernández, M.A. de la Rubia, Highly conductive coatings of carbon black/silica compositesobtained by a sol-gel process. Carbon 50, 4409–4417 (2012)CrossRefGoogle Scholar
  29. 29.
    S. Sun, X. Su, L. Qiang, X. Meng, F. Tang, Dispersion and stability of nanoparticles in electrophoretic displays. J. Mater. Sci.: Mater. Electron. 24, 382–391 (2013)Google Scholar
  30. 30.
    J. Ren, J. Shen, S. Lu, Science and Technology of Particle Dispersion, 1st edn. (Chemical Industry Press, Beijing, 2005), p. 185Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hongli Liu
    • 1
    • 2
  • Shirong Wang
    • 1
    • 2
  • Yin Xiao
    • 1
    • 2
  • Xianggao Li
    • 1
    • 2
  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  2. 2.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinPeople’s Republic of China

Personalised recommendations