Skip to main content
Log in

Studies on the dispersity of polymethacrylate-grafted carbon black in a non-aqueous medium: the influence of monomer structure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work aims at studying the structure of monomers on the dispersity of carbon black (CB) in a non-aqueous medium Isopar L. The polymethacrylate-grafted CB nanoparticles were prepared by a redox polymerization method. A series of methacrylate monomers containing alkyl side chain with different length and structure were employed for grafting. The structure and composition of polymethacrylate-grafted CB particles were characterized by a combination of FTIR, TGA and XPS. The particle size distribution, average diameter, contact angle to water and Isopar L and zeta potential of the prepared CB particles were investigated to provide insights into the effects of the monomer structure on the dispersity of modified CB particles in Isopar L. TEM images demonstrated that aggregation of modified CB particles reduced distinctly. The surface of CB particles changed from hydrophilic to hydrophobic after modification. Moreover, it is also found that the more branching or the longer the monomers used in the modification, the narrower the particle size distribution and the higher the zeta potential. The display prototype based on polymethacrylate-grafted carbon black particles showed an improved display performance under the electric field of 0.30 V μm−1. Especially, the EPD based on ethylhexyl methacrylate modified CB particles displayed the highest contrast ratio of 8.36 and minimum response time (527 ms) compared with the ones prepared with other modified particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Meng, T. Wen, S. Sun, R. Zheng, J. Ren, F. Tang, Synthesis and application of carbon-iron oxide microspheres’ black pigments in electrophoretic displays. Nanoscale Res. Lett. 5, 1664–1668 (2010)

    Article  Google Scholar 

  2. N. Hauptman, A. Vesel, V. lvanovski, M.K. Gunde, Electrical conductivity of carbon black pigments. Dyes Pigments 95, 1–7 (2012)

    Article  Google Scholar 

  3. C. Eisermann, C. Damm, B. Winzer, W. Peukert, Stabilization of carbon black particles with Cetyltrimethylammoniumbromide in aqueous media. Powder Technol. 253, 338–346 (2014)

    Article  Google Scholar 

  4. H. Mizukawa, M. Kawaguchi, Effects of perfluorosulfonic acid adsorption on the stability of carbon black suspensions. Langmuir 25, 1984–1987 (2009)

    Google Scholar 

  5. E. Sanfins, J. Dairou, S. Hussain, F. Busi, A.F. Chaffotte, F. Rodrigues-Lima, J.-M. Dupret, Carbon black nanoparticles impair acetylation of aromatic amine carcinogens through inactivation ofarylamine N-acetyltransferaseenzymes. ACS Nano 5, 4504–4511 (2011)

    Article  Google Scholar 

  6. T. Liu, S. Jia, T. Kowalewski, K. Matyjaszewski, Grafting poly(n-butyl acrylate) from a functionalized carbon black surface by atom transfer radical polymerization. Langmuir 19, 6342–6345 (2003)

    Article  Google Scholar 

  7. M.N. Patel, P.G. Smith Jr, J. Kim, T.E. Milner, K.P. Johnston, Electrophoretic mobility of concentrated carbon black dispersions in alow-permittivity solvent by optical coherence tomography. J. Colloid Interface Sci. 345, 194–199 (2010)

    Article  Google Scholar 

  8. K.-H. Kuo, Y.-H. Peng, W.-Y. Chiu, T.-M. Don, A novel dispersant for preparation of high loading and photosensitive carbon black dispersion. J. Polym. Sci. A: Polym. Chem. 46, 6185–6197 (2008)

    Article  Google Scholar 

  9. J. Huang, F. Shen, X. Li, X. Zhou, B. Li, R. Xu, C. Wu, Chemical modification of carbon black by a simple non-liquid-phase approach. J. Colloid Interface Sci. 328, 92–97 (2008)

    Article  Google Scholar 

  10. L.-F. Ma, R.-Y. Bao, S.-L. Huang, Z.-Y. Liu, W. Yang, B.-H. Xie, M.-B. Yang, Electrical properties and morphology of carbon black filled PP/EPDM blends: effect of selective distribution of fillers induced by dynamic vulcanization. J. Mater. Sci. 48, 4942–4951 (2013)

    Article  Google Scholar 

  11. L. Zhu, Y. Lu, Y. Wang, L. Zhang, W. Wang, Preparation and characterization of dopamine-decorated hydrophilic carbon black. Appl. Surf. Sci. 258, 5387–5393 (2012)

    Article  Google Scholar 

  12. D. Piasta, C. Bellmann, S. Spange, F. Simon, Endowing carbon black pigment particles with primary amino groups. Langmuir 25, 9071–9077 (2009)

    Article  Google Scholar 

  13. Y.F. Du, P.-W. Shi, Q.-Y. Li, Y.-C. Li, C.-F. Wu, Effect of poly(sodium 4-styrenesulfonate) modified carbon black on the dispersion and properties of waterborne polyurethane nanocomposites. Colloids Surf. A: Physicochem. Eng. Asp. 454, 1–7 (2014)

    Article  Google Scholar 

  14. P.-P. Yin, G. Wu, H.-Z. Chen, M. Wang, Preparation and characterization of carbon black/acrylic copolymer hybrid particles for dual particle electrophoretic display. Synth. Met. 161, 1456–1462 (2011)

    Article  Google Scholar 

  15. H. He, M. Zhong, D. Konkolewicz, K. Yacatto, T. Pappold, G. Sugar, N.E. David, K. Matyjaszewski, Carbon black functionalized with hyperbranched polymers: synthesis, characterization, and application in reversible CO2 capture. J. Mater. Chem. A 1, 6810–6821 (2013)

    Article  Google Scholar 

  16. J.Y. Kim, J.-Y. Oh, K.-S. Suh, Voltage switchable surface-modified carbon black nanoparticles for dual-particle electrophoretic displays. Carbon 66, 168–361 (2014)

    Google Scholar 

  17. M. Sansotera, C.L. Bianchi, G. Lecardi, G. Marchionni, P. Metrangolo, G. Resnati, W. Navarrini, Highly hydrophobic carbon black obtained by covalent linkage of perfluorocarbon and perfluoropolyether chains on the carbon surface. Chem. Mater. 21, 4498–4504 (2009)

    Article  Google Scholar 

  18. Q. Yang, L. Wang, W.-D. Xiang, J.-F. Zhou, Q.-H. Tan, Preparation of polymer-grafted carbon black nanoparticles by surface-initiated atom transfer radical polymerization. J. Polym. Sci. A: Polym. Chem. 45, 3451–3459 (2007)

    Article  Google Scholar 

  19. Z. Jiang, J. Jin, C. Xiao, X. Li, Effect of surface modification of carbon black (CB) on the morphology and crystallization of poly(ethylene terephthalate)/CB masterbatch. Colloids Surf. A: Physicochem. Eng. Asp. 395, 105–115 (2012)

    Article  Google Scholar 

  20. H.P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32, 759–769 (1994)

    Article  Google Scholar 

  21. D. Borah, S. Satokawa, S. Kato, T. Kojima, Characterization of chemically modified carbon black for sorption application. Appl. Surf. Sci. 254, 3049–3056 (2008)

    Article  Google Scholar 

  22. X.H. Li, W.H. Guo, Q.L. Zhou, S.A. Xu, C.F. Wu, Non-isothermal crystallization kinetics of poly (ethylene terephthalate)/grafted carbon black composite. Polym. Bull. 59, 685–697 (2007)

    Article  Google Scholar 

  23. J. Kim, S. Garoff, J.L. Anderson, L.J.M. Schlangen, Movement of colloidal particles in two-dimensional electric fields. Langmuir 21, 10941–10947 (2005)

    Article  Google Scholar 

  24. A. Asthana, T. Maitra, R. Büchel, M.K. Tiwari, D. Poulikakos, Multifunctional superhydrophobic polymer/carbon nanocomposites: graphene, carbon nanotubes, or carbon black? ACS Appl. Mater. Interfaces 6, 8859–8867 (2014)

    Article  Google Scholar 

  25. Q. Yang, L. Wang, W. Xiang, J. Zhou, J. Li, Grafting polymers onto carbon black surface by trapping polymer radicals. Polymer 48, 2866–2973 (2007)

    Article  Google Scholar 

  26. M.C.F. Soares, M.M. Viana, Z.L. Schaefer, V.S. Gangoli, Y. Cheng, V. Caliman, M.S. Wong, G.G. Silva, Surface modification of carbon black nanoparticles by dodecylamine: thermal stability and phase transfer in brine medium. Carbon 72, 287–295 (2014)

    Article  Google Scholar 

  27. M.K. Alam, M.T. Islam, M.F. Mina, M.A. Gafur, Structural, mechanical, thermal, and electrical properties of carbon black reinforced polyester resin composites. J. Appl. Polym. Sci. 131, 40421–40431 (2014)

    Google Scholar 

  28. E. Enríquez, J.F. Fernández, M.A. de la Rubia, Highly conductive coatings of carbon black/silica compositesobtained by a sol-gel process. Carbon 50, 4409–4417 (2012)

    Article  Google Scholar 

  29. S. Sun, X. Su, L. Qiang, X. Meng, F. Tang, Dispersion and stability of nanoparticles in electrophoretic displays. J. Mater. Sci.: Mater. Electron. 24, 382–391 (2013)

    Google Scholar 

  30. J. Ren, J. Shen, S. Lu, Science and Technology of Particle Dispersion, 1st edn. (Chemical Industry Press, Beijing, 2005), p. 185

    Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from National High Technology Research and Development Program of China (Grant No. 2013AA032003) and Tianjin Innovation Platform (Grant No. 14TXGCCX00017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Wang, S., Xiao, Y. et al. Studies on the dispersity of polymethacrylate-grafted carbon black in a non-aqueous medium: the influence of monomer structure. J Mater Sci: Mater Electron 27, 2022–2030 (2016). https://doi.org/10.1007/s10854-015-3986-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3986-z

Keywords

Navigation