Visible-light-driven catalytic degradation of ciprofloxacin on metal (Fe, Co, Ni) doped titanate nanotubes synthesized by one-pot approach

  • Changyu Lu
  • Weisheng Guan
  • Tuan K. A. Hoang
  • Jifeng Guo
  • Haigang Gou
  • Yiliang Yao


In this work, Fe-series (Fe, Co, Ni) doped titanate nanotubes were synthesized via a simple, one pot hydrothermal process using commercial TiO2 powder as the precursor. The samples were characterized by X-ray diffraction, nitrogen adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, and UV–Vis. SEM and TEM results show that regularly uniform nanotubes were obtained and they possess homogeneous tubular structures with open ends. There is no significantly morphological and structural difference between TiNTs and Fe-series doped TiNTs. Furthermore, the photocatalytic properties of TiNTs and Fe-series doped TiNTs were studied using the degradation of ciprofloxacin. Fe-series doped TiNTs exhibit higher catalytic activities than those of TiNTs and commercial TiO2.


TiO2 Total Organic Carbon Photocatalytic Degradation TiO2 Nanoparticles Total Organic Carbon Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the support from National Natural Science Foundation of China (Nos. 21407012 and 41472220), the Research and Development Project of Science and Technology for Shaanxi Province (Nos. 2013JQ2019 and 2015KJXX-25), the China Scholarship Council (CSC Nos. 201406560003, 201406565016 and 201506560022),the Fundamental Research Funds for the Central Universities (Nos. 310829150003, 0009-2014G2290017, 2014G3292007 and 2014G1291073), Project funded by China and Postdoctoral Science Foundation (No. 2014M552400), Shaanxi Natural Science Fund (2014JM7256), the Shaanxi Construction Department Science and Technology Project (2014-K28), and the National Training Projects of the University Students’ Innovation and Entrepreneurship program (Nos. 201310710057 and 201410710060).


  1. 1.
    M. Hoffmann, S. Martin, W. Choi, D. Bahnemann, Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)CrossRefGoogle Scholar
  2. 2.
    Y. Liu, X. Gan, B. Zhou, B. Xiong, J. Li, C. Dong, J. Bai, W. Cai, Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode. J. Hazard. Mater. 171, 678–683 (2009)CrossRefGoogle Scholar
  3. 3.
    R. Palominos, M. Mondaca, A. Giraldo, G. Penuela, M.M. Perez, H. Mansilla, Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions. Catal. Today 144, 100–105 (2009)CrossRefGoogle Scholar
  4. 4.
    X. Yan, X.Y. Wang, W. Gu, M.M. Wu, Y. Yan, B. Hu, G.B. Che, D.L. Han, J.H. Yang, W.Q. Fan, W.D. Shi, Single-crystalline AgIn(MoO4)2 nanosheets grafted Ag/AgBr composites with enhanced plasmonic photocatalytic activity for degradation of tetracycline under visible light. Appl. Catal. B Environ. 164, 297–304 (2015)CrossRefGoogle Scholar
  5. 5.
    A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)CrossRefGoogle Scholar
  6. 6.
    A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1, 1–21 (2000)CrossRefGoogle Scholar
  7. 7.
    M.A. Lazar, S. Varghese, S.S. Nair, Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts 2, 572–601 (2012)CrossRefGoogle Scholar
  8. 8.
    O. Carp, C.L. Husman, A. Reller, Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32, 33–177 (2004)CrossRefGoogle Scholar
  9. 9.
    X. Wang, Z. Li, J. Shi, Y. Yu, One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem. Rev. 114, 9346–9384 (2014)CrossRefGoogle Scholar
  10. 10.
    K. Lee, A. Mazare, P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114, 9385–9454 (2014)CrossRefGoogle Scholar
  11. 11.
    X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)CrossRefGoogle Scholar
  12. 12.
    M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sust. Energy Rev. 11, 401–425 (2007)CrossRefGoogle Scholar
  13. 13.
    T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube. Langmuir 14, 3160–3163 (1998)CrossRefGoogle Scholar
  14. 14.
    T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Titania nanotubes prepared by chemical processing. Adv. Mater. 11, 1307–1311 (1999)CrossRefGoogle Scholar
  15. 15.
    Z.Y. Yuan, B.L. Su, Titanium oxide nanotubes, nanofibers and nanowires. Colloid Surf. A 241, 173–183 (2004)CrossRefGoogle Scholar
  16. 16.
    T. Kasuga, Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties. Thin Solid Films 496, 141–145 (2006)CrossRefGoogle Scholar
  17. 17.
    X. Pan, Y. Zhao, S. Liu, C.L. Korzeniewski, S. Wang, Z. Fan, Comparing graphene-TiO2 nanowire and graphene-TiO2 nanoparticle composite photocatalysts. ACS Appl. Mater. Inter. 4, 3944–3950 (2012)CrossRefGoogle Scholar
  18. 18.
    D. Wu, J. Liu, X. Zhao, A. Li, Y. Chen, N. Ming, Sequence of events for the formation of titanate nanotubes, nanofibers, nanowires, and nanobelts. Chem. Mater. 18, 547–553 (2006)CrossRefGoogle Scholar
  19. 19.
    Q. Chen, W.Z. Zhou, G.H. Du, L.M. Peng, Trititanate nanotubes made via a single alkali treatment. Adv. Mater. 14, 1208–1211 (2002)CrossRefGoogle Scholar
  20. 20.
    W.Q. Han, W. Wen, Y. Ding, Z.X. Liu, M.M. Mathew, L. Lewis, J. Hanson, O. Gang, Fe-doped trititanate nanotubes: formation, optical and magnetic properties, and catalytic applications. J. Phys. Chem. C 111, 14339–14342 (2007)CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, S.G. Ebbinghaus, A. Weidenkaff, T. Kurz, H.-A. Krug von Nidda, P.J. Klar, M. Gungerich, A. Reller, Controlled iron-doping of macrotextured nanocrystalline titania. Chem. Mater. 15, 4028–4033 (2003)CrossRefGoogle Scholar
  22. 22.
    W. Huang, X. Tang, I. Felner, Y. Koltypin, A. Gedanken, Preparation and characterization of FexOy-TiO2 via sonochemical synthesis. Mater. Res. Bull. 37, 1721–1735 (2002)CrossRefGoogle Scholar
  23. 23.
    C.T. Hsieh, W.S. Fan, W.Y. Chen, J.Y. Lin, Adsorption and visible-light-derived photocatalytic kinetics of organic dye on Co-doped titania nanotubes prepared by hydrothermal synthesis. Sep. Purif. Technol. 67, 312–318 (2009)CrossRefGoogle Scholar
  24. 24.
    X. Zhang, Q. Liu, Visible-light-induced degradation of formaldehyde over titania photocatalyst co-doped with nitrogen and nickel. Appl. Surf. Sci. 254, 4780–4785 (2008)CrossRefGoogle Scholar
  25. 25.
    O.P. Ferreira, A.G. SouzaFilho, J.M. Filho, O.L. Alves, Unveiling the structure and composition of titanium oxide nanotubes through ion exchange chemical reactions and thermal decomposition processes. J. Braz. Chem. Soc. 17, 393–402 (2006)CrossRefGoogle Scholar
  26. 26.
    W. Wang, O.K. Varghese, M. Paulose, C.A. Grimes, A study on the growth and structure of titania nanotubes. J. Mater. Res. 19, 417–422 (2004)CrossRefGoogle Scholar
  27. 27.
    C.Y. Lu, W.S. Guan, H.G. Gou, Y.X. Peng, Y.L. Yao, Preparation, characterization, and photocatalytic performance of Co-TiNTs for tetracycline degradation in visible-light-driven. Fresenius Environ. Bull. 24, 833–838 (2015)Google Scholar
  28. 28.
    L. Xiong, Y. Yang, J.X. Mai, W.L. Sun, C.Y. Zhang, D.P. Wei, Q. Chen, J.R. Ni, Adsorption behavior of methylene blue onto titanate nanotubes. Chem. Eng. J. 156, 313–320 (2010)CrossRefGoogle Scholar
  29. 29.
    D. Leinen, A. Fernández, J.P. Espinós, J.P. Holgado, A.R. González-Elipe, An XPS study of the mixing effects induced by ion bombardment in composite oxides. Appl. Surf. Sci. 68, 453–459 (1993)CrossRefGoogle Scholar
  30. 30.
    E.G. Jose, C.C. Sandra, Y.R. Aline, C.M.A. Maria, G. Yoshitaka, X-Ray absorption and XPS study of titanium mixed oxides synthesized by the sol–gel. J. Electron Spectros. 114, 307–311 (2001)Google Scholar
  31. 31.
    J. Ding, Q. Zhong, S. Zhang, Simultaneous removal of NOX and SO2 with H2O2 over Fe based catalysts at low temperature. RSC Adv. 4, 5394–5398 (2014)CrossRefGoogle Scholar
  32. 32.
    C.J.G. Peter, M.A.J. Somers, Simultaneous determination of composition and thickness of thin iron-oxide films from XPS Fe 2p spectra. Appl. Surf. Sci. 100, 36–40 (1996)Google Scholar
  33. 33.
    É.G. Bajnóczi, N. Balázs, K. Mogyorósi, D.F. Srankó, Z. Pap, Z. Ambrus, S.E. Canton, K. Norén, E. Kuzmann, A. Vértesc, Z. Homonnay, A. Oszkó, I. Pálinkó, P. Sipos, The influence of the local structure of Fe(III) on the photocatalytic activity of doped TiO2 photocatalysts-an EXAFS, XPS and Mössbauer spectroscopic stud. Appl. Catal. B Environ. 103, 232–239 (2011)CrossRefGoogle Scholar
  34. 34.
    X. Hu, J.C. Yu, J. Gong, Q. Li, G. Li, α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv. Mater. 19, 2324–2329 (2007)CrossRefGoogle Scholar
  35. 35.
    A. Sathe, M.A. Peck, C. Balasanthiran, M.A. Langell, R.M. Rioux, J.D. Hoefelmeyer, X-ray photoelectron spectroscopy of transition metal ions attached to the surface of rod-shape anatase TiO2 nanocrystals. Inorg. Chim. Acta 422, 8–13 (2014)CrossRefGoogle Scholar
  36. 36.
    M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011)CrossRefGoogle Scholar
  37. 37.
    M. Ivill, S.J. Pearton, S. Rawal, L. Leu, P. Sadik, R. Das, A.F. Hebard, M. Chrisholm, J.B. Budai, D.P. Norton, Structure and magnetism of cobalt-doped ZnO thin films. New J. Phys. 10, 065002 (2008)CrossRefGoogle Scholar
  38. 38.
    M.C. Biesinger, L.W.M. Lau, A.R. Gerson, C. Smart, The role of the Auger parameter in XPS studies of nickel metal, halides and oxides. Phys. Chem. Chem. Phys. 14, 2434–2442 (2012)CrossRefGoogle Scholar
  39. 39.
    X. Fan, G.J. Fang, F. Cheng, P.L. Qin, H.H. Huang, Y.F. Li, Enhanced performance and stability in PBDTTT-CT: PC70 BM polymer solar cells by optimizing thickness of NiOx buffer layers. J. Phys. D Appl. Phys. 46, 305146 (2013)Google Scholar
  40. 40.
    R. Beranek, H. Tsuchiya, T. Sugishima, J.M. Macak, L. Taveira, S. Fujimoto, H. Kisch, P. Schmuki, Appl. Phys. Lett. 87, 243114 (2005)CrossRefGoogle Scholar
  41. 41.
    H. Tsuchiya, J.M. Macak, A. Ghicov, A.S. Räder, L. Taveira, P. Schmuki, Characterization of electronic properties of TiO2 nanotube films. Corros. Sci. 49, 203–210 (2007)CrossRefGoogle Scholar
  42. 42.
    A.S. Giri, A.K. Golder, Ciprofloxacin degradation from aqueous solution by Fenton oxidation: reaction kinetics and degradation mechanisms. RSC Adv. 4, 6738–6745 (2014)CrossRefGoogle Scholar
  43. 43.
    M. Bobu, A. Yediler, I. Siminiceanu, S. Schulte-Hostede, Degradation studies of ciprofloxacin on a pillared iron catalyst. Appl. Catal. B Environ. 83, 15–23 (2008)CrossRefGoogle Scholar
  44. 44.
    H.G. Wetzstein, M. Stadler, H.V. Tichy, A. Dalhoff, W. Karl, Degradation of ciprofloxacin by Basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum. Appl. Environ. Microbiol. 65, 1556–1563 (1999)Google Scholar
  45. 45.
    T. Paul, M.C. Dodd, T.J. Strathmann, Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: transformation products and residual antibacterial activity. Water Res. 44, 3121–3132 (2010)CrossRefGoogle Scholar
  46. 46.
    Y. Yang, S. Sun, Y. Song, X. Yan, W. Guan, X. Liu, W. Shi, Microwave-assisted in situ synthesis of reduced graphene oxide-BiVO4 composite photocatalysts and their enhanced photocatalytic performance for the degradation of ciprofloxacin. J. Hazard. Mater. 250–251, 106–114 (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Changyu Lu
    • 1
    • 2
  • Weisheng Guan
    • 1
  • Tuan K. A. Hoang
    • 2
  • Jifeng Guo
    • 1
  • Haigang Gou
    • 1
  • Yiliang Yao
    • 1
  1. 1.College of Environmental Science and EngineeringChang’an UniversityXi’anPeople’s Republic of China
  2. 2.Department of Chemical Engineering and Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooCanada

Personalised recommendations