Influence of CeO2 on microstructure and microwave dielectric properties of Na1/2Sm1/2TiO3 ceramics

  • Zi-xuan Fang
  • Bin Tang
  • Feng Si
  • Shu-ren Zhang


Crystal structures and microwave dielectric properties of wt% CeO2-added Na1/2Sm1/2TiO3 (NST) ceramics were investigated systematically (x = 0.0, 0.3, 0.6, 0.9 and 1.2). Samples with CeO2 content ≤1.2 wt% were crystallized as single phase of orthorhombic perovskite structures. When Ce4+ initially entered into the A-site of perovskite structure, uniform grain growth was observed and the dielectric constant increased, but then as Ce4+ began to enter into the B-site of the perovskite structure, abnormal grains appeared and the ε r value reduced. The Q × f value was firstly enhanced to its maxim value of 9640 GHz due to the improvement of density and elimination of pores as Ce4+ content was in the range of 0.0–0.6 wt%, then sharply decreased. The temperature coefficient of resonant frequency (τ f ) slightly decreased from 199.7 to 185.1 ppm/°C. Typically, specimens sintered in air at 1425 °C for 2 h exhibited excellent microwave dielectric properties of ε r = 103.01, Q × f = 9640 GHz and τ f  = 192.8 ppm/°C. The relationships between microwave properties and crystal structures were also discussed in this paper.


Dielectric Constant Perovskite CeO2 Resonant Frequency Apparent Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by National Natural Science Funds of China (Grant No. 51402039).


  1. 1.
    B. Tang, Z.-X. Fang, H. Li, L. Liu, S.-R. Zhang, Microwave dielectric properties of H3BO3-doped Ca0.61La0.39Al0.39Ti0.61O3 ceramics. J. Mater. Sci. Mater. Electron. 26, 300–306 (2015)CrossRefGoogle Scholar
  2. 2.
    M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier, Amsterdam, 2010)Google Scholar
  3. 3.
    Z. Dong-xiang, H. Ming-zhe, J. Sheng-lin, H. Jing, Microwave properties of CeO2-modified (PbCa)(FeNb)O3 dielectric ceramics. Mater. Lett. 58, 2684–2687 (2004)CrossRefGoogle Scholar
  4. 4.
    F. Azough, C. Leach, R. Freer, Effect of CeO2 on the sintering behaviour, cation order and properties of Ba3Co0.7Zn0.3Nb2O9 ceramics. J. Eur. Ceram. Soc. 26, 1883–1887 (2006)CrossRefGoogle Scholar
  5. 5.
    D. Pamu, G.L.N. Rao, K.V. Saravanan, K.C.J. Raju, Effect of CeO2 and Nd2O3 on the microstructure and microwave dielectric properties of (Zr0 .8, Sn0 .2)TiO4 ceramics. Integr. Ferroelectr. 117, 118–128 (2010)CrossRefGoogle Scholar
  6. 6.
    H. Sun, T. Pai, Y.-J. Nakamura, Y. Shan, Inaguma and M. Itoh, High temperature quantum paraelectricity in perovskite-type titanates Ln1/2 Na1/2 TiO3 (Ln = La, Pr, Nd, Sm, Eu, Gd and Tb). Ferroelectrics 200, 93–107 (1997)CrossRefGoogle Scholar
  7. 7.
    S.K. Barik, R.N.P. Choudhary, P.K. Mahapatra, Impedance spectroscopy study of Na1/2Sm1/2TiO3 ceramic. Appl. Phys. A 88, 217–222 (2007)CrossRefGoogle Scholar
  8. 8.
    R.T. Shannon, C.T. Prewitt, Effective ionic radii in oxides and fluorides. Acta. Crystallogr. Sect. B 25, 925–946 (1969)CrossRefGoogle Scholar
  9. 9.
    S. Ye, C.-H. Wang, X.-P. Jing, Photoluminescence and Raman spectra of double-perovskite Sr2Ca (Mo/W) O6 with A-and B-site substitutions of Eu3+. J. Electrochem. Soc. 155, J148–J151 (2008)CrossRefGoogle Scholar
  10. 10.
    D. Scarano, A. Zecchina, S. Bordiga, F. Geobaldo, G. Spoto, G. Petrini, G. Leofanti, M. Padovan, G. Tozzola, Fourier-transform infrared and Raman spectra of pure and Al-, B-, Ti- and Fe-substituted silicalites: stretching-mode region. J. Chem. Soc. Faraday Trans. 89, 4123–4130 (1993)CrossRefGoogle Scholar
  11. 11.
    H. Sreemoolanadhan, R. Ratheesh, M. Sebastian, N. Rodrigues, J. Philip, The synthesis, characterization and properties of Hf-substituted (dielectric ceramics. J. Phys. D Appl. Phys. 30, 1809 (1997)CrossRefGoogle Scholar
  12. 12.
    X. Sha, Z. Lü, X. Huang, J. Miao, Z. Liu, X. Xin, Y. Zhang, W. Su, Influence of the sintering temperature on electrical property of the Ce0.8Sm0.1Y0.1O1.9 electrolyte. J. Alloys Compd. 433, 274–278 (2007)CrossRefGoogle Scholar
  13. 13.
    H. Chen, B. Tang, A. Gao, S. Duan, H. Yang, Y. Li, H. Li, S. Zhang, Aluminum substitution for titanium in Ba3.75Nd9.5Ti18O54 microwave dielectric ceramics. J. Mater. Sci. Mater. Electron. 26, 405–410 (2015)CrossRefGoogle Scholar
  14. 14.
    S.H. Yoon, D.-W. Kim, S.-Y. Cho, K.S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. Eur. Ceram. Soc. 26, 2051–2054 (2006)CrossRefGoogle Scholar
  15. 15.
    N.I. Santha, M.T. Sebastian, P. Mohanan, N.M. Alford, K. Sarma, R.C. Pullar, S. Kamba, A. Pashkin, P. Samukhina, J. Petzelt, Effect of doping on the dielectric properties of cerium oxide in the microwave and far-infrared frequency range. J. Am. Ceram. Soc. 87, 1233–1237 (2004)CrossRefGoogle Scholar
  16. 16.
    L. Fang, Y. Tang, D. Chu, H. Zhou, H. Zhang, X. Chen, Q. Liu, Effect of B2O3 addition on the microstructure and microwave dielectric properties of Li2CoTi3O8 ceramics. J. Mater. Sci. Mater. Electron. 23, 478–483 (2012)CrossRefGoogle Scholar
  17. 17.
    R.T. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Crystallogr. Sect. A 32, 751–767 (1976)CrossRefGoogle Scholar
  18. 18.
    S. Yu, S. Zhang, B. Tang, X. Zhou, Y. Fang, Microwave dielectric properties of BaO–2(1 − x)ZnO–xNd2O3–4TiO2 (x–1.0) ceramics. Ceram. Int. 38, 613–618 (2012)CrossRefGoogle Scholar
  19. 19.
    C.-F. Tseng, T.-C. Wei, S.-C. Lu, Influence of A-site Ba substitution on microwave dielectric properties of (BaxMg1−x)(A0.05Ti0.95)O3 (A=Zr, Sn) ceramics. Ceram. Int. 40, 7081–7085 (2014)CrossRefGoogle Scholar
  20. 20.
    Y. Li, H. Li, J. Li, B. Tang, S. Zhang, H. Chen, Y. Wei, Effect of TiO2 ratio on the phase and microwave dielectric properties of Li2ZnTi3+x O8+2x ceramics. J. Electron. Mater. 43, 1107–1111 (2014)CrossRefGoogle Scholar
  21. 21.
    G.-H. Chen, C.-L. Yuan, C.-R. Zhou, Y. Yang, Low-firing high permittivity Ca0.6Sm0.8/3TiO3–(Li0.5Nd0.5)TiO3 ceramics with BaCu(B2O5) addition. Ceram. Int. 39, 9763–9766 (2013)CrossRefGoogle Scholar
  22. 22.
    H.S. Park, K.H. Yoon, E.S. Kim, Relationship between the bond valence and the temperature coefficient of the resonant frequency in the complex perovskite (Pb1−xCax)[Fe0.5(Nb1−yTay)0.5]O3. J. Ame. Ceram. Soc. 84, 99–103 (2001)CrossRefGoogle Scholar
  23. 23.
    H. Takahashi, Y. Baba, K. Ezaki, Y. Okamoto, K. Shibata, K. Kuroki, S. Nakano, Dielectric characteristics of (A1/2 1+· A1/2 3+) TiO3 ceramics at microwave frequencies. Jpn. J. App. Phys. 30, 2339 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zi-xuan Fang
    • 1
  • Bin Tang
    • 1
  • Feng Si
    • 1
  • Shu-ren Zhang
    • 1
  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations