Solubility limit of tetravalent Zr nanoparticles in Bi-2223 crystal lattice and evaluation of fundamental characteristic properties of new system

  • N. K. Saritekin
  • C. Terzioglu
  • M. Pakdil
  • T. Turgay
  • G. Yildirim


In this comprehensive work, we focus sensitively on the changes of microstructural, electrical, superconducting and mechanical properties belonging to the bulk Bi1.7Pb0.4Sr2.0Ca2.0ZrxCu3.1Oy materials with the different Zr nanoparticles (0 ≤ x ≤ 1.0) inserted in the superconducting matrix. The characterizations of the materials prepared are experimentally performed by bulk density, dc resistivity (ρ–T), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), electron dispersive X-ray (EDX) and Vickers microhardness (H v ) investigations. It is found that all the characteristics given above (especially superconducting properties) degrade considerably with the increment in the Zr addition level, and in fact they reach to the global minimum points in case of the maximum dopant level. The main reason of the rapid decrement in the electrical and superconducting properties stems from the presence of the localization problem in the Cu–O2 consecutively stacked layers. Likewise, the Zr foreign addition increases the artificial random defects, dislocations and grain boundary weak-links in the superconducting system, even being favored by the SEM examinations. At the same time, the EDX surveys indicate that the Zr nanoparticles in the tetravalent state prefer to substitute for the divalent states of the Cu inclusions through the crystal structure as a result of their close ionic radius values (86 pm for Zr4+ ion and 87 pm for Cu2+ ion). Thus, the differentiation of the electronegativity reduces the mobile hole concentration in the Cu–O2 slabs. Additionally, the XRD experimental findings show that there is a systematic decrement in the Bi-2223 (high) phase up to the Zr concentration level of x = 0.70 beyond which new characteristics peaks of ZrO2 appear immediately. This is in relation to the fact that the solubility limit corresponding to the Zr foreign impurity in the Bi-2223 system is about x = 0.70. Similarly, the regular decrement in both the c-axis length and crystallite size with the dopant confirms the deterioration of the superconducting properties. Furthermore, the dramatic reduction of the H v values stems from the suppression of the crystallinity and connection quality in the intergrain coupling of the superconducting samples exhibiting typical Indentation Size Effect behavior due to the existence of both elastic and plastic deformations in the system.


Vickers Microhardness Lattice Cell Parameter Applied Test Load Intergrain Coupling Applied Indentation Test Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study is totally supported by Abant Izzet Baysal University Scientific Research Project Coordination Unit (Project No: 2015.09.05.824).


  1. 1.
    O. Uzun, T. Karaaslan, M. Gögebakan, M. Keskin, J. Alloys Compd. 376, 149–157 (2004)CrossRefGoogle Scholar
  2. 2.
    N. Güçlü, U. Kölemen, O. Uzun, S. Çelebi, Physica C Supercond. 433(1–2), 115–122 (2005)CrossRefGoogle Scholar
  3. 3.
    J. Gong, H. Miao, Z. Zhao, Z. Guan, Mater. Sci. Eng A. 303, 179–186 (2001)CrossRefGoogle Scholar
  4. 4.
    R. Tickoo, R.P. Tandon, K.K. Bamzai, P.N. Kotru, Mater. Sci. Eng. B 110(2), 177–184 (2004)CrossRefGoogle Scholar
  5. 5.
    K. Sangwall, B. Surowska, P. Blaziak, ‘Mater. Chem. Phys. 80, 428–437 (2003)Google Scholar
  6. 6.
    O. Sahin, O. Uzun, U. Kölemen, B. Düzgün, N. Uçar, Chin. Phys. Lett. 22, 3137–3140 (2005)CrossRefGoogle Scholar
  7. 7.
    N.K. Saritekin, M. Dogruer, G. Yildirim, C. Terzioglu, J Mater Sci: Mater Electron 25, 3127–3136 (2014)Google Scholar
  8. 8.
    N.K. Saritekin, Y. Zalaoglu, G. Yildirim, M. Dogruer, C. Terzioglu, A. Varilci, O. Gorur, J. Alloys Compounds. 610, 361–371 (2014)CrossRefGoogle Scholar
  9. 9.
    M. Yilmazlar, Karadeniz Technical University, Institute of Natural Sciences, Ph.d. Thesis, (2002), Trabzon, TurkeyGoogle Scholar
  10. 10.
    K. Çolakoğlu, Serway, vol. 3, Palme Press, p: 1318 (1996)Google Scholar
  11. 11.
    P. Bordet, C. Chailout, Nature 327, 687–691 (1987)CrossRefGoogle Scholar
  12. 12.
    D.C. Harris, M.E. Hills, T.A. Hewston, J. Chem. Educ. 64, 847–850 (1987)CrossRefGoogle Scholar
  13. 13.
    P.B. Allen, Y.E. Picket, H. Krakauer, Phy. Rev. B 37, 7482–7490 (1988)CrossRefGoogle Scholar
  14. 14.
    S. Martin, M. Gurvitch, C.E. Rice, A.F. Hebard, P.L. Gammel, R.M. Fleming, A.T. Fiory, Phys. Rev. B 39, 9611–9613 (1989)CrossRefGoogle Scholar
  15. 15.
    D.M. Newns, P.C. Pattnaik, C.C. Tsuei, Phys. Rev. B 43, 3075–3084 (1991)CrossRefGoogle Scholar
  16. 16.
    M.B. Turkoz, S. Nezir, C. Terzioglu, A. Varilci, G. Yildirim, J. Mater. Sci: Mater. El. 24, 896–905 (2013)Google Scholar
  17. 17.
    S.B. Guner, O. Gorur, S. Celik, M. Dogruer, G. Yildirim, A. Varilci, C. Terzioglu, J. Alloy. Compd. 540, 260–266 (2012)CrossRefGoogle Scholar
  18. 18.
    K. Kocabas, O. Ozkan, O. Bilgili, Y. Kadıoglu, H. Yılmaz, J. Supercond. Nov. Magn. 23, 1485–1492 (2010)CrossRefGoogle Scholar
  19. 19.
    D. Mangapathi, T. Rao, V. Somaiah, Y.C. Haribabu, Venudhar. Cryst. Res. Technol. 28, 285–298 (1993)CrossRefGoogle Scholar
  20. 20.
    A. Ianculescu, M. Gartner, B. Despax, V. Bley, R. Th Lebey, M.Modreanu Gavrila, Appl. Surf. Sci. 253, 344–348 (2006)CrossRefGoogle Scholar
  21. 21.
    A.I. Abou-Aly, S.A. Mahmoud, R. Awad, M.M.E. Barakat, J. Supercond. Nov. Magn. 23, 1575–1588 (2010)CrossRefGoogle Scholar
  22. 22.
    S. Vinu, P.M. Sarun, A. Biju, R. Shabna, P. Guruswamy, U. Syamaprasad, Supercond. Sci. Technol. 21, 045001–045005 (2008)CrossRefGoogle Scholar
  23. 23.
    R. Shabna, P.M. Sarun, S. Vinu, A. Biju, U. Syamaprasad, Supercond. Sci. Technol. 22, 045016–045022 (2009)CrossRefGoogle Scholar
  24. 24.
    R. Shabna, P.M. Sarun, S. Vinu, A. Biju, P. Guruswamy, U. Syamaprasad, J. Appl. Phys. 104, 013919 (2008)CrossRefGoogle Scholar
  25. 25.
    R. Shabna, P.M. Sarun, S. Vinu, U. Syamaprasad, J. Alloy. Compd. 493, 11–16 (2010)CrossRefGoogle Scholar
  26. 26.
    S. Bazargan, H. Javanmard, M. Akhavan, Physica C 466, 157–162 (2007)CrossRefGoogle Scholar
  27. 27.
    G.I. Harus, A.I. Ponomarev, T.B. Charikova, A.N. Ignatenkov, L.D. Sabirzjanova, N.G. Shelushinina, V.F. Elesin, A.A. Ivanov, I.A. Rudnev, Physica C 383, 207–213 (2002)CrossRefGoogle Scholar
  28. 28.
    P. Starowicz, J. Sokowski, M. Balanda, A. Szytua, Physica C 363, 80–90 (2001)CrossRefGoogle Scholar
  29. 29.
    C. Nguyen-Van-Huong, C. Hinnen, J.M. Siffre, J. Mater. Sci. 32, 1725–1731 (1997)CrossRefGoogle Scholar
  30. 30.
    Y. Zalaoglu, G. Yildirim, C. Terzioglu, O. Gorur, J. Alloy. Compd. 622, 489–499 (2010)CrossRefGoogle Scholar
  31. 31.
    P.M. Sarun, S. Vinu, R. Shabna, A. Biju, U. Syamaprasad, J. Alloy. Compd. 472, 13–17 (2009)CrossRefGoogle Scholar
  32. 32.
    A. Biju, P.M. Sarun, R.P. Aloysius, U. Syamaprasad, J. Alloy. Compd. 454, 46–51 (2008)CrossRefGoogle Scholar
  33. 33.
    R.J. Sanderson, K.C. Hewitt, Physica C 425, 52–61 (2005)CrossRefGoogle Scholar
  34. 34.
    A. Yildiz, K. Kocabas, G.B. Akyuz, J. Supercond. Nov. Magn. 25, 1459–1467 (2012)CrossRefGoogle Scholar
  35. 35.
    M.T. Malachevsky, C.A. Dovidio, Supercond. Sci. Technol. 18, 289–293 (2005)CrossRefGoogle Scholar
  36. 36.
    X. Yang, T.K. Chaki, Supercond. Sci. Technol. 6, 343–348 (1993)CrossRefGoogle Scholar
  37. 37.
    O. Ozturk, E. Asikuzun, M. Erdem, G. Yildirim, O. Yildiz, C. Terzioglu, J. Mater. Sci: Mater. El. 23, 511–519 (2012)Google Scholar
  38. 38.
    Y. Zalaoglu, G. Yildirim, H. Buyukuslu, N.K. Saritekin, A. Varilci, C. Terzioglu, O. Gorur, J. Alloy. Compd. 631, 111–119 (2015)CrossRefGoogle Scholar
  39. 39.
    K. Kocabas, M. Ciftcioglu, Phys. Status Solidi A 177, 539–545 (2000)CrossRefGoogle Scholar
  40. 40.
    C.J. Poole, H.A. Farach, R. Creswick, Superconductivity (Academic Press, San Diego, 1995)Google Scholar
  41. 41.
    R.R. Reddy, M. Murakami, S. Tanaka, P.V. Reddy, Physica C 257, 137–142 (1996)CrossRefGoogle Scholar
  42. 42.
    O. Ozturk, G. Yildirim, E. Asikuzun, M. Coskunyurek, M. Yilmazlar, A. Kilic, J. Mater. Sci: Mater. El. 24, 4643–4654 (2013)Google Scholar
  43. 43.
    A. Sedky, Physica C 468, 1041–1046 (2008)CrossRefGoogle Scholar
  44. 44.
    M. Dogruer, C. Terzioglu, G. Yildirim, O. Gorur, J. Supercond. Nov. Magn. 27, 755–761 (2014)CrossRefGoogle Scholar
  45. 45.
    E. Asikuzun, O. Ozturk, H.A. Cetinkara, G. Yildirim, A. Varilci, M. Yılmazlar, C. Terzioglu, J. Mater. Sci: Mater. El. 23, 1001–1010 (2013)Google Scholar
  46. 46.
    M. Dogruer, Y. Zalaoglu, G. Yildirim, A. Varilci, C. Terzioglu, J. Mater. Sci: Mater. El. 24, 2019–2026 (2013)Google Scholar
  47. 47.
    H.C. Ling, M.F. Yan, J. Appl. Phys. 64, 1307–1311 (1988)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • N. K. Saritekin
    • 1
  • C. Terzioglu
    • 1
  • M. Pakdil
    • 2
  • T. Turgay
    • 3
  • G. Yildirim
    • 2
  1. 1.Department of PhysicsAbant Izzet Baysal UniversityBoluTurkey
  2. 2.Department of Mechanical EngineeringAbant Izzet Baysal UniversityBoluTurkey
  3. 3.Faculty of Fine Arts ArchitectureSakarya UniversitySakaryaTurkey

Personalised recommendations