Dielectric and microwave absorption properties of plasma sprayed short carbon fibers/glass composite coatings

  • Qinlong Wen
  • Wancheng Zhou
  • Jinbu Su
  • Yuchang Qing
  • Fa Luo
  • Dongmei Zhu


Short carbon fibers (SCFs)/glass composite coatings were fabricated by low power plasma spraying system. The morphology and microstructure of the coatings were observed. The dielectric and microwave absorption properties of the coatings with homogeneously dispersed SCFs were investigated in the frequency range of 8.2–12.4 GHz. The results show that both ε′ and ε″ monotonically increased with the increase of SCFs content, which could be ascribed to the enhanced electronic relaxation polarization, interfacial polarization and conductivity. And the Cole–Cole plots indicate that the interfacial polarization plays a dominant role on polarization mechanism with the increase of SCFs content. The effects of SCFs content and thickness on the microwave absorption properties were investigated. The composite coating containing 6.04 wt% SCFs shows that reflection loss below −10 dB (over 90 % microwave absorption) is in the frequency range of 8.9–11.4 GHz and the minimum value was −27.9 dB at 10.1 GHz with the thickness of 2.2 mm. The results indicate that SCFs/glass composite coating could be a potential microwave absorbing material used in 8.2–12.4 GHz.


Composite Coating Glass Matrix Microwave Absorption Complex Permittivity Interfacial Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by National Natural Science Foundation of China, No. 51072165. This work was supported by the fund of the States Key Laboratory of the Solidification Processing in NWPU (Nos. KP201307, SKLSP201313).


  1. 1.
    L.B. Kong, Z.W. Li, L. Liu et al., Recent progress in some composite materials and structures for specific electromagnetic applications. Int. Mater. Rev. 58(4), 203–259 (2013)CrossRefGoogle Scholar
  2. 2.
    F. Qin, C. Brosseau, A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys. 111, 061301 (2012)CrossRefGoogle Scholar
  3. 3.
    J.-B. Kim, S.-K. Lee, C.-G. Kim, Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band. Compos. Sci. Technol. 68, 2909–2916 (2008)CrossRefGoogle Scholar
  4. 4.
    Z. Wang, K. Jia, X. Liu, Temperature dependent electrical conductivity and microwave absorption properties of composites based on multi-wall carbon nanotubes and phthalocyanine polymer. J. Mater. Sci. Mater. Electron. 26(10), 8008–8016 (2015)CrossRefGoogle Scholar
  5. 5.
    V.K. Singh, A. Shukla, M.K. Patra et al., Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon 50, 2202–2208 (2012)CrossRefGoogle Scholar
  6. 6.
    Q. Yuchang, M. Dandan, Z. Yingying et al., Graphene nanosheet—and flake carbonyl iron particle-filled epoxy–silicone composites as thin-thickness and wide-bandwidth microwave absorber. Carbon 86, 98–107 (2015)CrossRefGoogle Scholar
  7. 7.
    A.P. Singh, P. Garg, F. Alam et al., Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, γ-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band. Carbon 50, 3868–3875 (2012)CrossRefGoogle Scholar
  8. 8.
    H. Qiu, J. Wang, S. Qi, Z. He et al., Microwave absorbing properties of multi-walled carbon nanotubes/polyaniline nanocomposites. J. Mater. Sci. Mater. Electron. 26, 564–570 (2015)CrossRefGoogle Scholar
  9. 9.
    H. Luo, P. Xiao, W. Hong, Dielectric behavior of laminate-structure Cf/Si3N4 composites in X-band. Appl. Phys. Lett. 105(3), 172903 (2014)CrossRefGoogle Scholar
  10. 10.
    A.A. Khurram, S.A. Rakha, P. Zhou et al., Correlation of electrical conductivity, dielectric properties, microwave absorption, and matrix properties of composites filled with graphene nanoplatelets and carbon nanotubes. J. Appl. Phys. 118, 044105 (2015)CrossRefGoogle Scholar
  11. 11.
    M.-S. Cao, W.-L. Song, Z.-L. Hou et al., The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010)CrossRefGoogle Scholar
  12. 12.
    S. Huang, W. Zhou, F. Luo et al., Mechanical and dielectric properties of short carbon fiber reinforced Al2O3 composites with MgO additive. Ceram. Int. 40, 2785–2791 (2014)CrossRefGoogle Scholar
  13. 13.
    Q. Ling, J. Sun, Q. Zhao et al., Microwave absorbing properties of linear low density polyethylene/ethylene–octene copolymer composites filled with short carbon fiber. Mater. Sci. Eng. B 162, 162–166 (2009)CrossRefGoogle Scholar
  14. 14.
    J. Fang, Z. Chen, W. Wei et al., A carbon fiber based three-phase heterostructure composite CF/Co0.2Fe2.8O4/PANI as an efficient electromagnetic wave absorber in the Ku band. RSC Adv 5, 50024 (2015)CrossRefGoogle Scholar
  15. 15.
    L. Zhou, S. Cui, F. Ma et al., Dielectric and microwave absorption properties of low power plasma sprayed NiCrAlY/Al2O3 coatings. J. Mater. Sci. Mater. Electron. 26, 3853–3860 (2015)CrossRefGoogle Scholar
  16. 16.
    K. Bobzin, G. Bolelli, M. Bruehl et al., Characterisation of plasma-sprayed SrFe12O19 coatings for electromagnetic wave absorption. J. Eur. Ceram. Soc. 31, 1439–1449 (2011)CrossRefGoogle Scholar
  17. 17.
    S. Jinbu, W. Zhou, Y. Liu et al., Effect of Ti3SiC2 addition on microwave absorption property of Ti3SiC2/cordierite coatings. Surf. Coat. Technol. 270, 39–46 (2015)CrossRefGoogle Scholar
  18. 18.
    D. Lisjak, K. Bobzin, K. Richardt et al., Preparation of barium hexaferrite coatings using atmospheric plasma spraying. J. Eur. Ceram. Soc. 29, 2333–2341 (2009)CrossRefGoogle Scholar
  19. 19.
    Y. Qing, S. Jinbu, Q. Wen et al., Enhanced dielectric and electromagnetic interference shielding properties of FeSiAl/Al2O3 ceramics by plasma spraying. J. Alloy. Compd. 651, 259–265 (2015)CrossRefGoogle Scholar
  20. 20.
    H.C. Sen Yang, W.X. Man, X. Zheng, Adhesion strength of plasma-sprayed hydroxyapatite coatings on laser gas-nitrided pure titanium. Surf. Coat. Technol. 203, 3116–3122 (2009)CrossRefGoogle Scholar
  21. 21.
    F. Smeacetto, M. Salvo, F.D. D’Hérin Bytner et al., New glass and glass–ceramic sealants for planar solid oxide fuel cells. J. Eur. Ceram. Soc. 30, 933–940 (2010)CrossRefGoogle Scholar
  22. 22.
    A. Goel, D.U. Tulyaganov, A.M. Ferrari et al., Structure, sintering, and crystallization kinetics of alkaline-earth aluminosilicate glass–ceramic sealants for solid oxide fuel cells. J. Am. Ceram. Soc. 93(3), 830–837 (2010)CrossRefGoogle Scholar
  23. 23.
    D. Hülsenberg, A. Harnisch, A. Bismarck, Microstructuring of Glasses (Springer, Berlin, 2008)CrossRefGoogle Scholar
  24. 24.
    J.R. Davis, Handbook of Thermal Spray Technology (ASM International, Ohio, 2004)Google Scholar
  25. 25.
    L. Zhou, S. Cui, F. Ma et al., Effect of feedstock characteristics on the dielectric and microwave absorption properties of plasma sprayed NiCrAlY/Al2O3 coatings. J. Mater. Sci. Mater. Electron. 26, 6653–6658 (2015)CrossRefGoogle Scholar
  26. 26.
    R.B. Heimann, Plasma-Spraying Coating Priciples and Applications, 2nd edn. (Wiley-VCH, New York, 1996)CrossRefGoogle Scholar
  27. 27.
    Y.A. Kim, S. Kamio, T. Tajiri et al., Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes. Appl. Phys. Lett. 90, 093125 (2007)CrossRefGoogle Scholar
  28. 28.
    W. Höland, G.H. Beall, Glass-Ceramic Technology, 2nd edn. (Wiley, Hoboken, 2012)CrossRefGoogle Scholar
  29. 29.
    F. Nanni, P. Travaglia, M. Valentini, Effect of carbon nanofibres dispersion on the microwave absorbing properties of CNF/epoxy composites. Compos. Sci. Technol. 69, 485–490 (2009)CrossRefGoogle Scholar
  30. 30.
    Z. Huang, W. Kang, X. Tang et al., X-band dielectric and microwave-absorbing properties of the incompletely carbonized polyacrylonitrile cloth. J. Appl. Polym. Sci. 129, 1068–1073 (2013)CrossRefGoogle Scholar
  31. 31.
    Y.C. Qing, W.C. Zhou, S. Jia et al., Electromagnetic and microwave absorption properties of carbonyl iron and carbon fiber filled epoxy/silicone resin coatings. Appl. Phys. A 100, 1177–1181 (2010)CrossRefGoogle Scholar
  32. 32.
    S. Zhang, Y. Zhai, Y. Zhang, Microwave-absorbing performance and mechanical properties of poly(vinyl chloride)/acrylonitrile–butadiene rubber thermoplastic elastomers filled with multiwalled carbon nanotubes and silicon carbide. J. Appl. Polym. Sci. 130, 345–351 (2013)CrossRefGoogle Scholar
  33. 33.
    L. Zhou, W. Zhou, F. Luo et al., Microwave dielectric properties of low power plasma sprayed NiCrAlY/Al2O3 composite coatings. Surf. Coat. Technol. 210, 122–126 (2012)CrossRefGoogle Scholar
  34. 34.
    Y. Liu, F. Luo, Y. Wang et al., Influences of milling on the dielectric and microwave absorption properties of Ti3SiC2/cordierite composite ceramics. J. Alloy. Compd. 629, 208–213 (2015)CrossRefGoogle Scholar
  35. 35.
    J. Sun, H.L. Xu, Y. Shen et al., Enhanced microwave absorption properties of the milled flake-shaped FeSiAl/graphite composites. J. Alloy. Compd. 548, 18–22 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Qinlong Wen
    • 1
  • Wancheng Zhou
    • 1
  • Jinbu Su
    • 1
  • Yuchang Qing
    • 1
  • Fa Luo
    • 1
  • Dongmei Zhu
    • 1
  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations