Effects of AlN buffer on the physical properties of GaN films grown on 6H-SiC substrates

  • Zhen Huang
  • Yuantao Zhang
  • Baijun Zhao
  • Fan Yang
  • Junyan Jiang
  • Gaoqiang Deng
  • Baozhu Li
  • Hongwei Liang
  • Yuchun Chang
  • Junfeng Song


In this study, 1.5-μm-thick GaN films with AlN buffer were prepared on 6H-SiC substrates by metal-organic chemical vapor deposition. To determine the effects of growth conditions of AlN buffer on crystalline quality and stress state of GaN films, two series of experiments were carried out. By optimizing growth conditions of AlN buffer, the full width at half maximum values of (0002) and \((10\bar{1}2)\) rocking curves of GaN films were improved to 136 and 225 arcsec, respectively. A smooth surface was obtained with a small root-mean-squared roughness of 0.332 nm and the excellent optical property was observed. Simultaneously, threading dislocation density and tensile stress in GaN films were reduced by increasing AlN buffer growth temperature and its thickness in some extent. Besides, stress values in GaN films were confirmed by Raman and low-temperature photoluminescence spectra, which indicated that the lower tensile stress in GaN film, the higher the film crystallinity.


Edge Dislocation Crystalline Quality Small Lattice Mismatch TMGa Flow Rate Breakdown Electric Field Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (Nos. 61106003, 61274023, 61223005 and 61376046), the Science and Technology Developing Project of Jilin Province (20130204032GX and 20150519004JH), and the Program for New Century Excellent Talents in University (NCET-13-0254).


  1. 1.
    X.T. Liu, D.B. Li, X.J. Sun, Z.M. Li, H. Song, H. Jiang, Y.R. Chen, CrystEngComm 16, 8058 (2014)CrossRefGoogle Scholar
  2. 2.
    O. Hironori, K. Tsunenobu, S. Jun, Appl. Phys. Lett. 105, 071603 (2014)CrossRefGoogle Scholar
  3. 3.
    D. Won, J.M. Redwing, J. Cryst. Growth 377, 51 (2013)CrossRefGoogle Scholar
  4. 4.
    D.S. Wang, H.W. Liang, P.C. Tao, K.X. Zhang, S.W. Song, Y. Liu, X.C. Xia, R.S. Shen, G.T. Du, Superlattices Microstruct. 70, 54 (2014)CrossRefGoogle Scholar
  5. 5.
    R.R. Sumathi, P. Gille, J. Mater. Sci. Mater. Electron. 25, 3733 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Kitagawa, H. Miyake, K. Hiramatsu, J. Appl. Phys. 53, 05FL03 (2014)CrossRefGoogle Scholar
  7. 7.
    L. Zhang, J.X. Yu, X.P. Hao, Y.Z. Wu, Y.B. Dai, Y.L. Shao, H.D. Zhang, Y. Tian, Sci. Rep. 4, 4179 (2014)Google Scholar
  8. 8.
    P.C. Tao, H.W. Liang, X.C. Xia, Q.J. Feng, D.S. Wang, Y. Liu, R.S. Shen, K.X. Zhang, X. Cai, Y.M. Luo, G.T. Du, J. Mater. Sci. Mater. Electron. 25, 4268 (2014)CrossRefGoogle Scholar
  9. 9.
    Z.F. Shi, Y.T. Zhang, B. Wu, X.P. Cai, J.X. Zhang, X.C. Xia, H. Wang, X. Dong, H.W. Liang, B.L. Zhang, G.T. Du, Appl. Phys. Lett. 102, 161101 (2013)CrossRefGoogle Scholar
  10. 10.
    E. Cho, A. Mogilatenko, F. Brunner, E. Richter, M. Weyers, J. Cryst. Growth 371, 45 (2013)CrossRefGoogle Scholar
  11. 11.
    G.J. Ding, L.W. Guo, Z.G. Xing, Y. Chen, P.Q. Xu, H.Q. Jia, J.M. Zhou, H. Chen, J. Semicond. 31, 033003 (2010)CrossRefGoogle Scholar
  12. 12.
    K. Mitsuaki, O. Hironori, I. Ryota, F. Mitsuru, K. Yoichi, K. Tsunenobu, S. Jun, Appl. Phys. Express 6, 062604 (2013)CrossRefGoogle Scholar
  13. 13.
    S.W. Song, Y. Liu, H.W. Liang, D.C. Yang, K.X. Zhang, X.C. Xia, R.S. Shen, G.T. Du, J. Mater. Sci. Mater. Electron. 24, 2923 (2013)CrossRefGoogle Scholar
  14. 14.
    Y.X. Cui, Y.M. Wang, C. Wen, B.H. Ge, F.H. Li, Y. Chen, H. Chen, Ultramicroscopy 126, 77 (2013)CrossRefGoogle Scholar
  15. 15.
    D.D. Koleske, R.L. Henry, M.E. Twigg, J.C. Culbertson, S.C. Binari, A.E. Wickenden, M. Fatemi, Appl. Phys. Lett. 80, 4372 (2002)CrossRefGoogle Scholar
  16. 16.
    D.S. Green, S.R. Gibb, B. Hosse, R. Vetury, D.E. Grider, J.A. Smart, J. Cryst. Growth 272, 285 (2004)CrossRefGoogle Scholar
  17. 17.
    C.G. Moe, Y. Wu, S. Keller, J.S. Speck, S.P. DenBaars, D. Emerson, Phys. Status Solidi A 203, 1708 (2006)CrossRefGoogle Scholar
  18. 18.
    D.C. Yang, H.W. Liang, Y. Qiu, S.W. Song, Y. Liu, R.S. Shen, Y.M. Luo, G.T. Du, J. Mater. Sci. Mater. Electron. 24, 2716 (2013)CrossRefGoogle Scholar
  19. 19.
    Y.R. Chen, H. Song, D.B. Li, X.J. Sun, H. Jiang, Z.M. Li, G.Q. Miao, Z.W. Zhang, Y. Zhou, Mater. Lett. 114, 26 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Qu, S.Q. Li, Y. Peng, X.L. Zhu, X.B. Hu, C.X. Wang, X.F. Chen, Y.Q. Gao, X.G. Xu, J. Alloys Compd. 502, 417 (2010)CrossRefGoogle Scholar
  21. 21.
    D.G. Zhao, S.J. Xu, M.H. Xie, S.Y. Tong, H. Yang, Appl. Phys. Lett. 83, 677 (2003)CrossRefGoogle Scholar
  22. 22.
    J.M. Wagner, F. Bechstedt, Appl. Phys. Lett. 77, 346 (2000)CrossRefGoogle Scholar
  23. 23.
    Y. Taniyasu, M. Kasu, T. Makimoto, J. Cryst. Growth 298, 310 (2007)CrossRefGoogle Scholar
  24. 24.
    I. Ahmad, M. Holtz, N.N. Faleev, H. Temkin, J. Appl. Phys. 95, 1692 (2004)CrossRefGoogle Scholar
  25. 25.
    H. Siegle, A. Hoffmann, L. Eckey, C. Thomsen, J. Christen, F. Bertram, D. Schmidt, D. Rudloff, K. Hiramatsu, Appl. Phys. Lett. 71, 2490 (1997)CrossRefGoogle Scholar
  26. 26.
    J.C. Zhang, D.G. Zhao, J.F. Wang, Y.T. Wang, J. Chen, J.P. Liu, H. Yang, J. Cryst. Growth 268, 24 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zhen Huang
    • 1
  • Yuantao Zhang
    • 1
  • Baijun Zhao
    • 2
  • Fan Yang
    • 1
  • Junyan Jiang
    • 1
  • Gaoqiang Deng
    • 1
  • Baozhu Li
    • 1
  • Hongwei Liang
    • 3
  • Yuchun Chang
    • 1
  • Junfeng Song
    • 1
  1. 1.State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunPeople’s Republic of China
  2. 2.Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
  3. 3.School of Physics and Optoelectronic TechnologyDalian University of TechnologyDalianChina

Personalised recommendations