Advertisement

Effect of sintering temperature on microstructure and electrical properties of Mn1.2Co1.5Ni0.3O4 ceramic materials using nanoparticles by reverse microemulsion method

  • Long Chen
  • Wenwen Kong
  • Jincheng Yao
  • Bo Gao
  • Qinan Zhang
  • Haijun Bu
  • Aimin Chang
  • Chunping Jiang
Article

Abstract

The high performance Mn1.2Co1.5Ni0.3O4 (MCN) ceramic materials are successfully fabricated using nanoparticles which are synthesized by the reverse microemulsion method. The morphology, crystal structure and particle size distribution of MCN nanoparticles are characterized by the XRD, SEM, TEM and HRTEM. The results show the well single tetragonal spinel structure and the narrow particle size distribution about 40 nm. As the sintering temperature increasing from 1000 to 1250 °C, all the MCN ceramic samples prepared by above-mentioned nanoparticles show the same single tetragonal spinel structure. The thermal sensitive properties with high values of ρ25, B25/100, Ea, and α25 of MCN ceramics at different sintering temperatures are in the range of 68,805–497,730 Ω cm, 4578–5159 K, 0.395–0.445 eV, and −5.2 to −5.8 %/K, respectively. These features indicate that the microstructure and electrical properties of MCN ceramics are relevant to the sintering temperature.

Keywords

Electrical Resistivity Sinter Temperature Octahedral Site Nitrate Hexahydrate Negative Temperature Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the One Hundred Talent Program of Chinese Academy of Sciences, the National High Technology Research and Development Program of China (Grant No. 2012AA091102), Chinese Academy of Sciences (Grant No. YZ201261), and the Talent Program of Xinjiang Uygur Autonomous Region.

References

  1. 1.
    K. Park, Mater Sci&Eng B. 104, 9 (2003)CrossRefGoogle Scholar
  2. 2.
    L. He, Z.Y. Ling, Appl. Phys. Lett. 98, 242112 (2011)CrossRefGoogle Scholar
  3. 3.
    M. Filippo, G.T. Ilenia, A.-T. Umberto, J. Eur. Ceram. Soc. 33, 1045 (2013)CrossRefGoogle Scholar
  4. 4.
    J. Wu, Z.M. Huang, Y. Hou, Y.Q. Gao, J.H. Chu, J. Appl. Phys. 107, 053716 (2010)CrossRefGoogle Scholar
  5. 5.
    K. Park, J.K. Lee, J. Alloys Compd. 475, 513 (2009)CrossRefGoogle Scholar
  6. 6.
    L.W. Ji, Z.K. Tan et al., Phys. Chem. Chem. Phys. 13, 7139 (2011)CrossRefGoogle Scholar
  7. 7.
    S.A. Kanada, V. Puri, Mater. Lett. 60, 1428 (2006)CrossRefGoogle Scholar
  8. 8.
    V. Akrati, D. Reena, S. Prabhakar, RSC Adv. 4, 1799 (2014)CrossRefGoogle Scholar
  9. 9.
    H. Gleiter, Acta Mater. 48, 1–29 (2000)CrossRefGoogle Scholar
  10. 10.
    C.R. Vestal, Z.J. Zhang, Nano Lett. 3, 1739 (2003)CrossRefGoogle Scholar
  11. 11.
    S.H. Sun, H. Zeng, M.R. Philip, S.X. Wang, J. Am. Chem. Soc. 126, 273 (2004)CrossRefGoogle Scholar
  12. 12.
    A.W. Carpenter, D.L. Slomberg, K.S. Rao, M.H. Schoenfisch, ACS Nano 5, 7235 (2011)CrossRefGoogle Scholar
  13. 13.
    H. Lu, H.F. Ju et al., CrystEngComm 15, 6511 (2013)CrossRefGoogle Scholar
  14. 14.
    L. Chen, W. Kong et al., Ceram. Int. 41, 2847 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Jagtap, S. Rane et al., J. Eur. Ceram. Soc. 28, 1001 (2008)CrossRefGoogle Scholar
  16. 16.
    M. Justin, A. Varghese et al., J. Electroceram. 22, 436 (2009)CrossRefGoogle Scholar
  17. 17.
    A. Feteira, J. Am. Ceram. Soc. 92, 967 (2009)CrossRefGoogle Scholar
  18. 18.
    Y. Abe, T. Meguro et al., J. Ceram Process Res. 4, 140 (2003)Google Scholar
  19. 19.
    K. Park, S.J. Kim, J.G. Kim, S. Nahm, J. Eur. Ceram. Soc. 27, 2009 (2007)CrossRefGoogle Scholar
  20. 20.
    K. Park, I.H. Han, J. Electroceram. 17, 1069 (2006)CrossRefGoogle Scholar
  21. 21.
    E.D. Macklen, J. Phys. Chem. Solids 47, 1073 (1986)CrossRefGoogle Scholar
  22. 22.
    C. Behera, R.N.P. Choudhary, P.R. Das, J. Mater. Sci. Mater. Electron. 26, 2343 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Long Chen
    • 1
    • 2
    • 3
  • Wenwen Kong
    • 1
    • 2
    • 3
  • Jincheng Yao
    • 1
  • Bo Gao
    • 1
  • Qinan Zhang
    • 1
    • 4
  • Haijun Bu
    • 3
  • Aimin Chang
    • 1
  • Chunping Jiang
    • 1
    • 3
  1. 1.Key Laboratory of Functional Materials and Devices for Special Environments of CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and ChemistryChinese Academy of SciencesÜrümqiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of ScienceSuzhouChina
  4. 4.Department of PhysicsChangji UniversityChangjiChina

Personalised recommendations