CoS nanorod arrays with different lenghth used in CdS sensitized ZnO solar cells

  • Yunfei Sun
  • Lili Yang
  • Maobin Wei
  • Gang Chen
  • Guangbo Che
  • Jinghai Yang
  • Zhe Wang
  • Zhiyuan Gao


Well aligned CoS NRAs with different length have been grown on ITO substrates by a simple chemical method without any catalyst. The morphology properties of the as grown CoS nanostructures were investigated by SEM and TEM images. From the SEM results measured from the tilt-view, with the reaction time increasing, the length of CoS nanorods increased. However these CoS(6) NRAs partially aggregated, which will decrease the surface area of CoS NRAs. The optimized photovoltaic performance with a Voc of 0.66 V, a Jsc of 1.96 mA/cm2, an FF of 0.43, and a η of 0.64 % is obtained from the device based on CoS(4) ANRAs electrode. Although the quantum dot sensitized solar cells (QDSSCs) with CoS NRAs show smaller η values than that of the QDSSC with sputtered Pt counter electrode, the CoS material will be an efficient alternative for the Pt electrode due to its excellent catalytic ability and low cost.


Co3O4 Chemical Bath Deposition Method Transmission Electron Micrographs Image High Resolution Transmission Electron Micrographs Counter Electrode Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge financial support from National Programs for High Technology Research and Development of China (Item No. 2013AA032202), National Natural Science Foundation of China (Grant Nos. 11204104, 61178074, 61475063, 61308095, 61378085 and 11254001), Program for New Century Excellent Talents in University (No. NCET-13-0824), Program for the Development of Science and Technology of Jilin province (Item Nos. 201205078), the Twentieth Five-Year Program for Science and Technology of Education Department of Jilin Province (Item No. 20140147), Program for the Master Students’ Scientific and Innovative Research of Jilin Normal University (Item No. 2013022).


  1. 1.
    J. Oh, H.C. Yuan, H.M. Branz, An 18.2 %-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nat. Nanotechnolog. 7, 743 (2012)CrossRefGoogle Scholar
  2. 2.
    G. Mariani, A.C. Scofield, C.H. Hung, D.L. Huffaker, GaAs nanopillar-array solar cells employing in situ surface passivation. Nat. Commun. 4, 1497 (2013)CrossRefGoogle Scholar
  3. 3.
    H. Qin, S. Wenger, M.F. Xu, F.F. Gao, X.Y. Jing, P. Wang, S.M. Zakeeruddin, M. Grätzel, An organic sensitizer with a fused dithienothiophene unit for efficient and stable dye-sensitized solar cells. J. Am. Chem. Soc. 130, 9202 (2008)CrossRefGoogle Scholar
  4. 4.
    J.L. Segura, N. Martín, D.M. Guldi, Materials for organic solar cells: the C60/π-conjugated oligomer approach. Chem. Soc. Rev. 34, 31 (2005)CrossRefGoogle Scholar
  5. 5.
    A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Porphyrin-sensitized solar cells with cobalt(II/III)-based redoxelectrolyte exceed 12 percent efficiency. Science 334, 629 (2011)CrossRefGoogle Scholar
  6. 6.
    A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110, 6595 (2010)CrossRefGoogle Scholar
  7. 7.
    Y. Wang, M. Wu, X. Lin, Z. Shi, A. Hagfeldt, T. Ma, J. Mater. Chem. 22, 4009 (2012)CrossRefGoogle Scholar
  8. 8.
    W. Zhao, X.L. Zhu, H. Bi, H.L. Cui, S.R. Sun, F.Q. Huang, Novel two-step synthesis of NiS nanoplatelet arrays as efficient counter electrodes for dye-sensitized solar cells. J. Power Sources 242, 28 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Wang, S. Lu, X. Li, X. Zhang, S. He, T. He, Study of H2SO4 concentration on properties of H2SO4 doped polyaniline counter electrodes for dye-sensitized solar cells. J. Power Sources 242, 438 (2013)CrossRefGoogle Scholar
  10. 10.
    A. Kay, M. Grätzel, Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol. Energy Mater. Sol. Cells 44, 99 (1996)CrossRefGoogle Scholar
  11. 11.
    T.N. Murakami, S. Ito, Q. Wang, M.D.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R.H. Baker, P. Comte, P. Pechy, M. Grätzel, Highly efficient dye-sensitized solar cells based on carbon black counter electrodes. J. Electrochem. Soc. 153, A2255–A2261 (2006)CrossRefGoogle Scholar
  12. 12.
    E. Ramasamy, W.J. Lee, D.Y. Lee, J.S. Song, Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I3 ) reduction in dye-sensitized solar cells. Electrochem. Commun. 10, 1087 (2008)CrossRefGoogle Scholar
  13. 13.
    F. Hao, P. Dong, J. Zhang, Y.C. Zhang, P.E. Loya, R.H. Hauge, J.B. Li, J. Lou, H. Lin, High electrocatalytic activity of vertically aligned single-walled carbon nanotubes towards sulfide redox shuttles. Sci. Rep. 2, 368 (2012)CrossRefGoogle Scholar
  14. 14.
    H. Choi, H. Kim, S. Wang, Y. Han, M. Jeon, Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition. J. Mater. Chem. 21, 7548 (2011)CrossRefGoogle Scholar
  15. 15.
    M.K. Wang, A.M. Anghel, B. Marsan, N.C. Ha, N. Pootrakulchote, S.M. Zakeeruddin, M. Grätzel, CoS supersedes Pt as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells. J. Am. Chem. Soc. 131, 15976 (2009)CrossRefGoogle Scholar
  16. 16.
    C.H. Bu, Q.D. Tai, Y.M. Liu, S.S. Guo, X.Z. Zhao, A transparent and stable polypyrrole counter electrode for dye-sensitited solar cell. J. Power Sources 221, 78 (2012)CrossRefGoogle Scholar
  17. 17.
    R. Trevisan, M. Döbbelin, P.P. Boix, E.M. Barea, R. Tena-Zaera, I. Mora-Seró, J. Bisquert, PEDOT nanotube arrays as high performing counter electrodes for dye sensitized solar cells. study of the interactions among electrolytes and counter electrodes. Adv. Energy Mater. 1, 781 (2011)CrossRefGoogle Scholar
  18. 18.
    C.W. Kung, H.W. Chen, C.Y. Lin, K.C. Huang, R. Vittal, K.C. Ho, CoS acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cell. ACS Nano 6, 7016–7025 (2012)CrossRefGoogle Scholar
  19. 19.
    J.Y. Lin, J.H. Liao, S.W. Chou, Cathodic electrodeposition of highly porous cobalt sulfide counter electrodes for dye-sensitized solar cells. Electrochim. Acta 56, 8818–8826 (2011)CrossRefGoogle Scholar
  20. 20.
    Y.F. Sun, J.H. Yang, L.L. Yang, J. Cao, M. Gao, Z.Q. Zhang, Z. Wang, H. Song, Improve the open-circuit voltage of ZnO solar cells with inserting ZnS layers by two ways. J. Solid State Chem. 200, 258 (2013)CrossRefGoogle Scholar
  21. 21.
    P. Porta, R. Dragone, G. Fierro, M. Inversi, M. Lojacono, G. Moretti, J. Chem. Soc. Faraday Trans. 88, 311 (1992)CrossRefGoogle Scholar
  22. 22.
    J. Yang, H.W. Liu, W.N. Martens, R.L. Frost, Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J. Phys. Chem. C 114, 111 (2010)CrossRefGoogle Scholar
  23. 23.
    S.J. Bao, Y.B. Li, C.M. Li, Q.L. Bao, Q. Lu, J. Guo, Shape evolution and magnetic properties of cobalt sulfide. Cryst. Growth Des. 8, 3745 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yunfei Sun
    • 1
    • 2
  • Lili Yang
    • 2
  • Maobin Wei
    • 2
  • Gang Chen
    • 2
  • Guangbo Che
    • 2
  • Jinghai Yang
    • 2
  • Zhe Wang
    • 3
  • Zhiyuan Gao
    • 3
  1. 1.College of Information TechnologyJilin Normal UniversitySipingChina
  2. 2.Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversitySipingChina
  3. 3.Songyuan Binjiang Middle SchoolSongyuanChina

Personalised recommendations