Effect of cobalt doping on structural, dielectric and magnetodielectric properties of Ba0.95Sr0.05TiO3 ceramics

  • S. G. Dhumal
  • S. B. Kulkarni
  • Moses E. Jayasingh
  • P. B. Joshi
  • D. J. Salunkhe


Paper reports the synthesis of cobalt doped Ba0.95Sr0.05TiO3 (BST0.05) by solid state reaction (SSR) method. The X-ray diffractograms analysis reveals the formation of single phase crystalline structure. Scanning electron microscopy image was also employed to observe surface morphology. The dielectric constant and dielectric loss of BST0.05 are obviously influenced by cobalt addition content. The Curie temperature Tc shifts to lower value with increasing cobalt doping content. The studies on P-E and M-H hysteresis loops are carried out to confirm simultaneous presence of both the ferroelectric and ferromagnetic orders in a cobalt doped BST. It is observed that, the value of saturation magnetisation (Ms) is 0.01535 emu/g at field 4500 G, value of remanent magnetisation (Mr) is 0.0008263 emu/g and value of coeresivity is 640 G measured at room temperature for BSTCo0.05.


Hysteresis Loop BaTiO3 BiFeO3 Barium Strontium Titanate Pyrochlore Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



All authors are thankful to DRDO-NRB, New Delhi, India for financial support.


  1. 1.
    N.V. Giridharan, R. Jayavel, P. Ramasamy, Structural, ‘morphological and electrical studies on barium strontium titanate thin films prepared by sol-gel technique’. Cryst. Res. Technol. 36, 65–72 (2001)CrossRefGoogle Scholar
  2. 2.
    S. Saha, S.B. Krupanidhi, Dielectric response in pulsed laser ablated (Ba, Sr) TiO3 thin films. J. Appl. Phys. 87, 849–854 (2000)CrossRefGoogle Scholar
  3. 3.
    H.T. Su, M.J. Lancaster, F. Huang, F. Wellhofer, Electrically tunable superconducting quasilumped element resonator using thin-film ferroelectrics. Microwave and Optical, Technology Letters 24, 155–158 (2000)CrossRefGoogle Scholar
  4. 4.
    R. Heindl, H. Srikanth, S. Witanachchi, P. Mukherjee, A. Heim, G. Matthews, S. Balachandran, S. Natarajan, T. Weller, Multifunctional ferrimagnetic-ferroelectric thin films for microwave applications. Appl. Phys. Lett. 90, 252507 (2007)CrossRefGoogle Scholar
  5. 5.
    H. Ihrig, J. Phys. C11, 819 (1978)Google Scholar
  6. 6.
    H.J. Hagenmann, H. Ihrig, Phys. Rev. B 20, 3871 (1979)CrossRefGoogle Scholar
  7. 7.
    O. Willander, M. Nur, Q. Israr, A.B.A. Hamad, F.G. El Desouky, M.A. Salem, Determination of A.C. conductivity of nano-composite perovskite Ba(1–x–y) Sr(x)TiFe(y)O3 prepared by the sol- gel technique. M. J. Crystal. Process Technol. 2, 1–11 (2012)Google Scholar
  8. 8.
    K. Battisha, A.B.A. Hamad, R.M. Mahani, Structure and dielectric studies of nano- composite Fe2O3: BaTiO3 prepared by sol-gel method. Phys. B 404(16), 2274–2279 (2009)CrossRefGoogle Scholar
  9. 9.
    C.A.F. Vaz, J. Hoffman, C.H. Anh, R. Ramesh, Adv. Mater. 22, 2900–2918 (2010)CrossRefGoogle Scholar
  10. 10.
    T. Chakraborty, S. Ray, M. Itoh, Defect-induced magnetism: test of dilute magnetism in Fe-doped hexagonal BaTiO3 single crystals. Phys Rev B 83, 144407 (2011)CrossRefGoogle Scholar
  11. 11.
    C.H. Wang, S.L. Yuan, S.Y. Yin, Z.M. Tian, P. Li, Multiferroic properties in Ba0.93 Bi0.07Ti1 − xMnxO3 ceramics. J. Appl. Phys. 107, 093902 (2010)CrossRefGoogle Scholar
  12. 12.
    Y.H. Lin, S.Y. Zhang, C.Y. Deng, Y. Zhang, X.H. Wang, C.W. Nan, Enhancement in magnetoelectric response in CoFe2O4–BaTiO3 heterostructure. Appl. Phys. Lett. 92, 112501 (2008)CrossRefGoogle Scholar
  13. 13.
    S.G. Dhumal, S.G. Chavan, Y.D. Kolekar, P.B. Joshi, D.J. Salunkhe, Investigations on Fe doped Ba0.95Sr0.05TiO3 single phase magnetodielectric compounds. J. Mater. Sci.: Mater. Electron. 26, 1466–1473 (2015)Google Scholar
  14. 14.
    A. Prinz, Magnetoelectronics. Science 282, 1660–1663 (1998)CrossRefGoogle Scholar
  15. 15.
    I. Zutić, J. Fabian, S. Das Sarma, Spintronics: fundamentals and applications. Rev. Modern Phys. 76, 323–410 (2004)Google Scholar
  16. 16.
    V.R. Palkar, S.K. Malik, Observation of magnetoelectric behaviour at room temperature in Pb(FexTi1−x)O3. Solid State Commun. 134(11), 783–786 (2005)Google Scholar
  17. 17.
    K.C. Verma, M. Ram, R.K. Kotnala, S.S. Bhatt, N.S. Negi, Multiferroic Pb1−xSrx(Fe0.01Ti0.988)O3 nanoparticles: room temperature dielectric relaxation, ferroelectricity and ferromagnetism. Indian J. Pure Appl. Phys. 48, 593–599 (2010)Google Scholar
  18. 18.
    M.M. Sutar, A.N. Tarale, S.R. Jigajeni, S.B. Kulkarni, V.R. Reddy, P.B. Joshi, Magnetoelectric and Magnetodielectric effect in Ba(1−x)Sr(x)TiO3 and Co0.9Ni0.1Fe(2−x)Mn(x)O4 composites’. Solid State Sci. 14, 1064–1070 (2012)CrossRefGoogle Scholar
  19. 19.
    T. Bonaedy, K.M. Song, K.D. Sang, Solid State Commun. 148, 424 (2008)CrossRefGoogle Scholar
  20. 20.
    A. Ianculescu, D. Berger, L. Mitoşeriu, C.E. Ciomaga, G. Voicu, N. Dragan, D. Crişan, E. Vasile, Ferroelectrics 22, 369 (2008)Google Scholar
  21. 21.
    J.S. Kim, S.Y. Cho, M.S. Jang, Ferroelectric and relax or behaviour of Fe-doped Sr0.5Ba0.5Nb2−xFexO6 ceramics with a tungsten-bronze structure. J. Korean Phys. Soc. 51(2), 692–696 (2007)CrossRefGoogle Scholar
  22. 22.
    B. Kumari, P.R. Mandal, T.K. Nath, Magnetic, magnetocapacitance and dielectric properties of BiFeO3 nanoceramics. Adv. Mat. Lett. 5(2), 84–88 (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. G. Dhumal
    • 1
  • S. B. Kulkarni
    • 2
  • Moses E. Jayasingh
    • 3
  • P. B. Joshi
    • 1
  • D. J. Salunkhe
    • 1
  1. 1.Nano-Composite Research Laboratory, Department of PhysicsK.B.P. MahavidyalayaPandharpurIndia
  2. 2.Department of PhysicsInstitute of ScienceMumbaiIndia
  3. 3.Naval Materials Research LaboratoryAmbernathIndia

Personalised recommendations