Advertisement

Effect of lanthanum modification on dielectric relaxation behavior in lead zirconate stannate titanate antiferroelectric ceramics

  • Wenle Ma
  • Xiaozhen Song
  • Yong Zhang
  • Qian Zhang
  • Jia Zhu
  • Dongliang Yang
  • Yongzhou Chen
  • Ivan Baturin
Article

Abstract

The effect of lanthanum concentration on dielectric relaxation behavior in lead zirconate stannate titanate antiferroelectric ceramics was investigated by X-ray diffraction technique, dielectric spectroscopy, Sawyer–Tower polarization methods, and thermally stimulated depolarization current (TSDC) measurements. The tetragonal phase was found to be stabilized from the rhombohedral phase by lanthanum substitution. As the lanthanum content was increased, the dielectric constant decreased gradually over the measuring temperature range. As a result of polarization–electric field hysteresis loops, the maximum polarization decreased and the switching field increased with the increase of lanthanum content. Investigations of TSDC measurements revealed that the peak is due to space-charge polarization. It is suggested to be associated with the relaxation of oxygen vacancies.

Keywords

Morphotropic Phase Boundary Thermally Stimulate Depolarization Current Pb3O4 Lanthanum Content Lanthanum Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by International Science & Technology Cooperation Program of China (No. 2012DFR50560) and Ministry of Education and Science of the Russian Federation (UID RFMEFI59414X0011).

References

  1. 1.
    W. Pan, C. Dam, Q. Zhang, L. Cross, J. Appl. Phys. 66, 6014 (1989)CrossRefGoogle Scholar
  2. 2.
    L. Zhou, D.C. Lupascu, A. Zimmermann, Y. Zhang, J. Appl. Phys. 97, 124106 (2005)CrossRefGoogle Scholar
  3. 3.
    H.L. Zhang, X.F. Chen, F. Cao, G.S. Wang, X.L. Dong, Z.Y. Hu, T. Du, J. Am. Ceram. Soc. 93, 4015 (2010)CrossRefGoogle Scholar
  4. 4.
    X.H. Hao, Y. Wang, L. Zhang, L.W. Zhang, S.L. An, Appl. Phys. Lett. 102, 163903 (2013)CrossRefGoogle Scholar
  5. 5.
    W.F. Wu, Y. Zhang, Q. Zhang, X.R. Wang, X.Z. Song, Mater. Res. Bull. 60, 183 (2014)CrossRefGoogle Scholar
  6. 6.
    Q.N. Zheng, T.Q. Yang, K. Wei, J.F. Wang, X. Yao, Ceram. Int. 38, S9 (2012)CrossRefGoogle Scholar
  7. 7.
    X. Dai, Z. Xu, J. Li, D. Viehland, J. Mater. Res. 11, 618 (1996)CrossRefGoogle Scholar
  8. 8.
    W.H. Chan, Z. Xu, T. Hung, H. Chen, J. Appl. Phys. 96, 6606 (2004)CrossRefGoogle Scholar
  9. 9.
    K.M. Lee, H.M. Jang, W.J. Park, J. Mater. Res. 12, 1603 (1997)CrossRefGoogle Scholar
  10. 10.
    J. Zhu, Y. Zhang, Q. Zhang, X.Z. Song, I. Baturin, J. Mater. Sci. Mater. Electron. 25, 4916 (2014)CrossRefGoogle Scholar
  11. 11.
    W. Liu, C.A. Randall, J. Am. Ceram. Soc. 91, 3251 (2008)CrossRefGoogle Scholar
  12. 12.
    S. Nakamura, H. Takeda, K. Yamashita, J. Appl. Phys. 89, 5386 (2001)CrossRefGoogle Scholar
  13. 13.
    N. Nikonorova, T. Borisova, E. Barmatov, P. Pissis, R. Diaz Calleja, Macromolecules 36, 5784 (2003)CrossRefGoogle Scholar
  14. 14.
    V. Gun’ko, V. Turov, V. Zarko, E. Voronin, V. Tischenko, V. Dudnik, E. Pakhlov, A. Chuiko, Langmuir 13, 1529 (1997)CrossRefGoogle Scholar
  15. 15.
    F. Bruni, A.C. Leopolo, Biophys. J. 63, 663 (1992)CrossRefGoogle Scholar
  16. 16.
    R. Shannon, Acta Crystallogr. A 32, 751 (1976)CrossRefGoogle Scholar
  17. 17.
    I.M. Reaney, E.L. Colla, N. Setter, Jpn. J. Appl. Phys. 33, 3984 (1994)CrossRefGoogle Scholar
  18. 18.
    S.H. Yoon, C.A. Randall, K.H. Hur, J. Am. Ceram. Soc. 92, 1766 (2009)CrossRefGoogle Scholar
  19. 19.
    J.J. Moura Ramos, N.T. Correia, Thermochim. Acta 426, 185 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Wenle Ma
    • 1
  • Xiaozhen Song
    • 1
  • Yong Zhang
    • 1
  • Qian Zhang
    • 1
  • Jia Zhu
    • 1
  • Dongliang Yang
    • 1
  • Yongzhou Chen
    • 1
  • Ivan Baturin
    • 2
  1. 1.Beijing Key Laboratory of Fine Ceramics, State Key Laboratory of New Ceramics and Fine Processing, Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina
  2. 2.Ferroelectric Laboratory, Institute of Natural ScienceUral Federal UniversityEkaterinburgRussia

Personalised recommendations