Characterization and doping effects study of high hole concentration Li-doped ZnO thin film prepared by sol–gel method

  • N. Bagheri
  • M. H. Majles Ara
  • N. Ghazyani


In this study, lithium-doped p-type ZnO thin film was achieved by applying optimized parameters such as surfactant concentration and annealing temperature in sol–gel method. The stable and reproducible Li-doped ZnO film was characterized by Hall-effect measurement, which revealed high hole concentration of 1019 cm−3 order. The conductivity of the ZnO film doped with optimized Li ratio (15 at%) changed from n-type to p-type. To study the effect of lithium doping, we characterized the optical, electrical and structural properties in comparison with undoped ZnO thin film fabricated by the same method. The XRD results show Li-doping could strongly improve the crystal quality and c-axis orientation of low temperature annealed ZnO thin film. The SEM observations confirm the XRD results based on size reduction. The UV–visible spectra of films show high transparency over 95 % in visible region. The PL-spectra obviously revealed that Li dopants substitute in Zn vacancies. And most deep level defects could disappear with Li doping.


Zinc Oxide Spin Coating Technique Deep Level Defect Lithium Doping High Hole Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J.C. Fan, K.M. Sreekanth, Z. Xie, S.L. Chang, K.V. Rao, Prog. Mater Sci. 58, 874 (2013)CrossRefGoogle Scholar
  2. 2.
    Q.X. Xia, K.S. Hui, K.N. Hui, D.H. Hwang, J. Singh, Y.R. Cho, S.K. Lee, W. Zhou, Z.P. Wan, C.-N. Ha, C.-N.H. Thuc, Y.G. Son, Mater. Lett. 78, 180 (2012)CrossRefGoogle Scholar
  3. 3.
    J.-W. Kang, Y.-S. Choi, B.-H. Kim, N.-Y. Kim, C.W. Tu, S.-J. Park, Scr. Mater. 39, 84–85 (2014)Google Scholar
  4. 4.
    R. Swapna, M.C.S. Kumar, Ceram. Int. 39, 1799 (2013)CrossRefGoogle Scholar
  5. 5.
    T.-H. Yang, J.-M. Wu, Acta Mater. 60, 3310 (2012)CrossRefGoogle Scholar
  6. 6.
    C.H. Park, S.B. Zhang, S.-H. Wei, Phys. Rev. B 66, 073202 (2002)CrossRefGoogle Scholar
  7. 7.
    B. Xiao, Z. Ye, Y. Zhang, Y. Zeng, L. Zhu, B. Zhao, Appl. Surf. Sci. 253, 895 (2006)CrossRefGoogle Scholar
  8. 8.
    K.-C . Chiu, Y.-W. Kao, J.-H. Jean, J. Am. Ceram. Soc. 93, 1860 (2010)Google Scholar
  9. 9.
    W. Liu, S.L. Gu, J.D. Ye, S.M. Zhu, Y.X. Wu, Z.P. Shan, R. Zhang, Y.D. Zheng, S.F. Choy, G.Q. Lo, X.W. Sun, J. Cryst. Growth 310, 3448 (2008)CrossRefGoogle Scholar
  10. 10.
    H. Nian, S.H. Hahn, K.-K. Koo, E.W. Shin, E.J. Kim, Mater. Lett. 63, 2246 (2009)CrossRefGoogle Scholar
  11. 11.
    D. Wang, J. Zhou, G. Liu, J. Alloys Compd. 481, 802 (2009)CrossRefGoogle Scholar
  12. 12.
    H. Sarma, K.C. Sarma, IJSRP4, 1 (2014)Google Scholar
  13. 13.
    A. Jalar, M.A.A. Hamid, L. Karkeng, R. Shamsudin, Int. J. Electrochem. Sci. 8, 6767 (2013)Google Scholar
  14. 14.
    M. Ardyanian, N. Sedigh, Bull. Mater. Sci. 37, 1309 (2014)CrossRefGoogle Scholar
  15. 15.
    C. Li, X.C. Li, P.X. Yan, E.M. Chong, Y. Liu, G.H. Yue, X.Y. Fan, Appl. Surf. Sci. 253, 4000 (2007)CrossRefGoogle Scholar
  16. 16.
    Y.J. Zeng, Z.Z. Ye, W.Z. Xu, D.Y. Li, J.G. Lu, L.P. Zhu, B.H. Zhao, Appl. Phys. Lett. 88, 062107 (2006)CrossRefGoogle Scholar
  17. 17.
    J.G. Lu, Y.Z. Zhang, Z.Z. Ye, Y.J. Zeng, H.P. He, L.P. Zhu, J.Y. Huang, L. Wang, J. Yuan, B.H. Zhao, X.H. Li, Appl. Phys. Lett. 89, 112113 (2006)CrossRefGoogle Scholar
  18. 18.
    J.M. Bian, X.M. Li, C.Y. Zhang, L.D. Chen, Q. Yao, Appl. Phys. Lett. 84, 3783 (2004)CrossRefGoogle Scholar
  19. 19.
    L. Guojie, S. Sambasivam, K. Saes Byul, P. Sung Wook, C.C. Byung, J.J. Hyun, J. Byeong Eog, J. Korean Phys. Soc. 59, 2770 (2011)CrossRefGoogle Scholar
  20. 20.
    J. Xie, Q. Lu, Q. Chen, J. Mater. Sci. Mater. Electron. 26, 2669 (2015)CrossRefGoogle Scholar
  21. 21.
    S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, S.J. Chua, J. Appl. Phys. 98, 1 (2005)Google Scholar
  22. 22.
    O. Lupan, T. Pauporté, L. Chow, B. Viana, F. Pellé, L.K. Ono, B.R. Cuenya, H. Heinrich, Appl. Surf. Sci. 256, 1895 (2010)CrossRefGoogle Scholar
  23. 23.
    P. Gupta, M. Ramrakhiani, Open Nanosci. J. 3, 15 (2009)CrossRefGoogle Scholar
  24. 24.
    C.Y. Tsay, W.T. Hsu, Ceram. Int. 39, 7425 (2013)CrossRefGoogle Scholar
  25. 25.
    M. Kashif, U. Hashim, M.E. Ali, K.L. Foo, S.M. Usman Ali, J. Nanomater. 2013, 478942 (2013)CrossRefGoogle Scholar
  26. 26.
    T.P. Rao, M.C.S. Kumar, J. Alloys Compd. 509, 8676 (2011)CrossRefGoogle Scholar
  27. 27.
    M. Willander, O. Nur, J.R. Sadaf, M.I. Qadir, S. Zaman, A. Zainelabdin, N. Bano, I. Hussain, Materials (Basel) 3, 2643 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • N. Bagheri
    • 1
    • 2
  • M. H. Majles Ara
    • 1
    • 2
  • N. Ghazyani
    • 1
    • 2
  1. 1.Nanophotonics Laboratory, Physics DepartmentKharazmi UniversityTehranIran
  2. 2.Photonics Laboratory, Physics DepartmentKharazmi UniversityTehranIran

Personalised recommendations