Structural, dielectric and magnetic characteristics of Bi(Ni0.25Ti0.25Fe0.50)O3 ceramics

  • Alok Shukla
  • Nitin Kumar
  • C. Behera
  • R. N. P. Choudhary


The polycrystalline sample of Bi(Ni0.25Ti0.25Fe0.50)O3 was synthesized using a standard high-temperature solid-state reaction technique. Room temperature structural analysis of the above material, carried out using X-ray diffraction data, shows the formation of a single-phase compound with orthorhombic structure which is different from that of its parent compound (BiFeO3). The co-substitution of Ni2+ and Ti4+ at the Fe3+-site of BiFeO3 enhances its dielectric, ferroelectric and magnetic properties with significant reduction of electrical leakage current or tangent loss. Room temperature surface morphology and texture of the samples, recorded by a field-emission scanning electron microscope, reveal the uniform distribution of grains on the surfaces of the sample. Studies of dielectric, modulus and impedance spectroscopy on (Ni, Ti) modified BiFeO3 over a wide frequency (1 kHz–1 MHz) and temperature (25–500 °C) ranges provide many interesting features of the material useful for devices. Impedance and modulus plots were used as tools to analyze the sample behavior as a function of frequency. Cole–Cole plots showed a non-Debye relaxation.


BiFeO3 Modulus Analysis Remnant Magnetization High Frequency Side NiTiO3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)CrossRefGoogle Scholar
  2. 2.
    G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)CrossRefGoogle Scholar
  3. 3.
    S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13–20 (2007)CrossRefGoogle Scholar
  4. 4.
    R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21–29 (2007)CrossRefGoogle Scholar
  5. 5.
    A. Singh, V. Pandey, R.K. Kotnala, D. Pandey, Phys. Rev. Lett. 101, 247602 (2008)CrossRefGoogle Scholar
  6. 6.
    A.M. Glazer, Acta Crystallogr. Sect. A 31, 756 (1975)CrossRefGoogle Scholar
  7. 7.
    C.W. Nan, M.I. Bichurin, S. Dongb, D. Viehland, J. Appl. Phys. 103, 031101 (2008)CrossRefGoogle Scholar
  8. 8.
    Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731–1733 (2004)CrossRefGoogle Scholar
  9. 9.
    V.R. Palkar, J. John, R. Pinto, Appl. Phys. Lett. 80, 1628 (2002)CrossRefGoogle Scholar
  10. 10.
    Y. Shimizu, K. Uemura, N. Miura, N. Yamzoe, Chem. Lett. 17, 1979–1982 (1988)CrossRefGoogle Scholar
  11. 11.
    T. Cao, Y. Li, C. Wang, C. Shao, Y. Liu, Langmuir 27, 2946–2952 (2011)CrossRefGoogle Scholar
  12. 12.
    B. Zielinska, E. Borowiak-Palen, R.J. Kalenczuk, Int. J. Hydrogen Energy 33, 1797–1802 (2008)CrossRefGoogle Scholar
  13. 13.
    X. Lin, J. Xing, W. Wang, Z. Shan, F. Xu, F. Huang, J. Phys. Chem. C 111, 18288–18293 (2007)CrossRefGoogle Scholar
  14. 14.
    M.I. Petrov, D.A. Balaev, K.A. Shaihutdinov, K.S. Aleksandrov, Phys. C 341, 1863–1864 (2000)CrossRefGoogle Scholar
  15. 15.
    H. Wendt, G. Imarisio, J. Appl. Electrochem. 118, 1–14 (1988)CrossRefGoogle Scholar
  16. 16.
    R.P. Liferovich, R.H. Mitchell, Phys. Chem. Miner. 32, 442–449 (2005)CrossRefGoogle Scholar
  17. 17.
    S.N.S. Reddy, D.N. Leonard, L.B. Wiggins, K.T. Jacob, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 36, 2685 (2005)CrossRefGoogle Scholar
  18. 18.
    P.S. Anjana, M.T. Sebastianw, J. Am. Ceram. Soc. 89, 2114 (2006)Google Scholar
  19. 19.
    Y.M. Chiang III, D. Birnie, W.D. Kingery, Physical ceramics, vol. 34 (Wiley, New York, 1996)Google Scholar
  20. 20.
    R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, J.F. Scott, Phys. Rev. B 77, 014110 (2008)CrossRefGoogle Scholar
  21. 21.
    E. Wu, An interactive powder diffraction data interpretations and indexing Program Version 2.1, School of Physical Sciences, Flinders University of South Australia, SA 5042 (1989)Google Scholar
  22. 22.
    B.D. Cullity, Elements of X-ray diffraction, 2nd edn. (Addison-Wesley, Bosten, 1978)Google Scholar
  23. 23.
    M. Panahi-Kalamuei, P. Rajabpour, M. Salavati-Niasari, Z. Zarghami, M. Mousavi-Kamazani, J. Mater. Sci. Mater. Electron. 26, 3691–3699 (2015)CrossRefGoogle Scholar
  24. 24.
    A. Sobhani, M. Salavati-Niasari, J. Mater. Sci. Mater. Electron. 26, 6831–6836 (2015)CrossRefGoogle Scholar
  25. 25.
    I.V. Kityk, M. Makowska-Janusik, M.D. Fontana, M. Aillerie, A. Fahmi, J. Phys. Chem. B 105, 12242 (2001)CrossRefGoogle Scholar
  26. 26.
    I.V. Kityk, M. Makowska-Janusik, M.D. Fontana, M. Aillerie, A. Fahmi, J. Appl. Phys. 90, 5542 (2001)CrossRefGoogle Scholar
  27. 27.
    K. Jawahar, R.N.P. Choudhary, Mater. Lett. 62, 911 (2008)CrossRefGoogle Scholar
  28. 28.
    J.C. Anderson, Dielectrics (Chapman & Hall, London, 1964)Google Scholar
  29. 29.
    S. Sen, R.N.P. Choudhary, Mater. Chem. Phys. 87, 256 (2004)CrossRefGoogle Scholar
  30. 30.
    S. Brahma, R.N.P. Choudhary, A.K. Thakur, Phys. B 355, 188 (2005)CrossRefGoogle Scholar
  31. 31.
    J.R. Macdonald, Impedance spectroscopy emphasizing solid materials and systems (Wiley, New York, 1987)Google Scholar
  32. 32.
    J. Suchanicz, Mater. Sci. Eng. B 55, 114 (1998)CrossRefGoogle Scholar
  33. 33.
    C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mater. Sci. 41, 369 (2006)CrossRefGoogle Scholar
  34. 34.
    V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, J. Am. Ceram. Soc. 55, 492 (1972)CrossRefGoogle Scholar
  35. 35.
    H. Jain, C.H. Hsieh, J. Non-Cryst, Solids 172, 1408 (1994)Google Scholar
  36. 36.
    S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur, Phys. Status Solidi 201, 588 (2004)CrossRefGoogle Scholar
  37. 37.
    S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Appl. Phys. A 112, 387–395 (2013)CrossRefGoogle Scholar
  38. 38.
    S. Sen, R.N.P. Choudhary, P. Pramanik, Phys. B 387, 56 (2007)CrossRefGoogle Scholar
  39. 39.
    B. Behera, P. Nayak, R.N.P. Choudhary, J. Alloys Compd. 436, 226 (2007)CrossRefGoogle Scholar
  40. 40.
    I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. 58, 429 (1975)CrossRefGoogle Scholar
  41. 41.
    J.R. Macdonald, Solid State Ion. 13, 147 (1984)CrossRefGoogle Scholar
  42. 42.
    D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)CrossRefGoogle Scholar
  43. 43.
    N.K. Karan, D.K. Pradhan, R. Thomas, B. Natesan, R.S. Katiyar, Solid State Ion. 179, 689 (2008)CrossRefGoogle Scholar
  44. 44.
    A.K. Jonscher, Nature 267, 673 (1977)CrossRefGoogle Scholar
  45. 45.
    A. Mishra, S.N. Choudhary, R.N.P. Choudhary, V.R.K. Murthy, K. Prasad, J. Mater. Sci. Mater. Electron. 23, 185–192 (2012)CrossRefGoogle Scholar
  46. 46.
    N. Van Minh, N. Gia Quan, J. Alloys Compd. 509, 2663–2666 (2011)CrossRefGoogle Scholar
  47. 47.
    P. Guzdek, J. Magn. Magn. Mater. 349, 219–223 (2014)CrossRefGoogle Scholar
  48. 48.
    H.O. Rodrigues, G.F.M.P. Junior, J.S. Almeida, E.O. Sancho, A.C. Ferreira, M.A.S. Silva, A.S.B. Sombra, J. Phys. Chem. Solids 71, 1329–1336 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Alok Shukla
    • 1
  • Nitin Kumar
    • 1
  • C. Behera
    • 2
  • R. N. P. Choudhary
    • 2
  1. 1.Department of PhysicsNational Institute of Technology MizoramAizawlIndia
  2. 2.Multifunctional Materials Research Laboratory, Department of Physics, ITERSOA UniversityBhubaneswarIndia

Personalised recommendations