Influence of B-site non-stoichiometry on electrical properties of (K0.458Na0.542)0.96Li0.04Nb0.85Ta0.15Sb x O3 ceramics

  • Jialiang Liu
  • Juan Du
  • Zhijun Xu
  • Ruiqing Chu
  • Xiujie Yi
  • Jigong Hao
  • Renfei Cheng


In the study, B-site non-stoichiometric (excess) lead-free (K0.458Na0.542)0.96Li0.04Nb0.85Ta0.15Sb x O3 (KNLNS x T) ceramics were prepared by conventional mixed oxide method. The results indicate that excess Sb in an amount of ≤0. 5 mol% can diffuse into the lattice of the KNLNT ceramics and form the pure perovskite phase. The Sb excess ceramics show decreased ferroelectric properties due to the partial substitution of Sb3+ for B-site ions. The deviation of Sb from chemical stoichiometry can distinctly influence electrical properties of KNLNT ceramics. Enhanced piezoelectric activity is observed in the ceramics with a 0.5 mol% excess of Sb. The work has shown the necessity of adequately controlling B-site non-stoichiometry of KNN-based lead-free piezoelectric ceramics in obtaining the desired electrical properties.


Piezoelectric Property Ferroelectric Property Optimum Sinter Temperature Conventional Mixed Oxide Method Planar Electromechanical Coupling Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (Nos. 51302124, 51372110 and 51402114), the Research Foundation of Liaocheng University (No. 318011306) and the National High Technology Research and Development Program of China (No. 2013AA030801).


  1. 1.
    X. Chen, J. Chen, D. Ma, H. Zhou, L. Fang, J. Mater. Sci.: Mater. Electron. 26, 1413 (2015)Google Scholar
  2. 2.
    Z. Sun, Y. Pu, C. Zhang, J. Mater. Sci.: Mater. Electron. 26, 1275 (2015)Google Scholar
  3. 3.
    R. Gaur, M. Sangal, A. Dwivedi, K.C. Singh, J. Mater. Sci.: Mater. Electron. 25, 3195 (2014)Google Scholar
  4. 4.
    Y.M. Li, Z.Y. Shen, F. Wu, T.Z. Pan, Z.M. Wang, Z.G. Xiao, J. Mater. Sci.: Mater. Electron. 25, 1028 (2014)Google Scholar
  5. 5.
    L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959)CrossRefGoogle Scholar
  6. 6.
    P. Zhao, B.P. Zhang, J.F. Li, Appl. Phys. Lett. 90, 242909 (2007)CrossRefGoogle Scholar
  7. 7.
    P. Zhao, B.P. Zhang, J.F. Li, Appl. Phys. Lett. 91, 172901 (2007)CrossRefGoogle Scholar
  8. 8.
    J. Yoo, K. Lee, K. Chung, S. Lee, K. Kim, J. Hong et al., Jpn. J. Appl. Phys. 45, 7444 (2006)CrossRefGoogle Scholar
  9. 9.
    S.H. Moon, Y.S. Ham, S.W. Yun, K.S. Lee, S.M. Koo, J.G. Ha et al., Ceram. Int. 38S, S323 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Du, J.F. Wang, L.M. Zheng, C.M. Wang, P. Qi, G.Z. Zang, Chin. Phys. Lett. 26, 027701 (2009)CrossRefGoogle Scholar
  11. 11.
    L. Liu, Y. Huang, Y. Li, L. Fang, H. Dammak, H. Fan, M.P. Thi, Mater. Lett. 68, 300 (2012)CrossRefGoogle Scholar
  12. 12.
    L. Liu, M. Wu, Y. Huang, L. Fang, H. Fan, H. Dammak, M.P. Thi, Mater. Res. Bull. 46, 1467 (2011)CrossRefGoogle Scholar
  13. 13.
    L. Liu, S. Zheng, R. Huang, D. Shi, Y. Huang, S. Wu, Y. Li, L. Fang, C. Hu, Adv. Powder Technol. 24, 908 (2013)CrossRefGoogle Scholar
  14. 14.
    H.W. Du, Y.Q. Huang, H.P. Tang, W. Feng, H.N. Qin, X.F. Lu, Ceram. Int. 39, 5689 (2013)CrossRefGoogle Scholar
  15. 15.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma et al., Nature 432, 84 (2004)CrossRefGoogle Scholar
  16. 16.
    J. Du, J.F. Wang, G.Z. Zang, P. Qi, S.J. Zhang, T.R. Shrout, Chin. Phys. Lett. 25, 1446 (2008)CrossRefGoogle Scholar
  17. 17.
    R.Z. Zuo, J. Fu, D.Y. Lv, Y. Liu, J. Am. Ceram. Soc. 93, 2783 (2010)CrossRefGoogle Scholar
  18. 18.
    D.M. Lin, K.W. Kwok, K.H. Lam, H.L.W. Chan, J. Appl. Phys. 101, 074111 (2007)CrossRefGoogle Scholar
  19. 19.
    B.Q. Ming, J.F. Wang, P. Qi, G.Z. Zang, J. Appl. Phys. 101, 054103 (2007)CrossRefGoogle Scholar
  20. 20.
    L. Liu, D. Shi, L. Fan, J. Chen, G. Li, L. Fang, B. Elouadi, J. Mater. Sci.: Mater. Electron. 26(9), 6592 (2015)Google Scholar
  21. 21.
    L. Liu, Y. Huang, Y. Li, M. Wu, L. Fang, C. Hu, Y. Wang, Phys. B 407(1), 136 (2012)CrossRefGoogle Scholar
  22. 22.
    L. Liu, H. Fan, L. Fang, X. Chen, H. Dammak, M.P. Thi, Mater. Chem. Phys. 117(1), 138 (2009)CrossRefGoogle Scholar
  23. 23.
    H.L. Du, D.J. Liu, F.S. Tang, D.M. Zhu, W.C. Zhou, J. Am. Ceram. Soc. 90, 2824 (2007)CrossRefGoogle Scholar
  24. 24.
    L.J. Liu, D.P. Shi, M. Knapp, H. Ehrenberg, L. Fang, J. Chen, J. Appl. Phys. 116(18), 184104 (2014)CrossRefGoogle Scholar
  25. 25.
    S.J. Perm, N.M. Alford, A. Templeton, X.R. Wang, M.S. Xu, M. Reece, K. Schrapel, J. Am. Ceram. Soc. 80, 1885 (1997)Google Scholar
  26. 26.
    Q.B. Hu, H.W. Du, W. Feng, C. Chen, Y.Q. Huang, J. Alloy. Compd. 640, 327 (2015)CrossRefGoogle Scholar
  27. 27.
    M. Kosec, D. Kolar, Mater. Res. Bull. 10, 335 (1975)CrossRefGoogle Scholar
  28. 28.
    D. Gao, K.W. Kwok, D. Lin, H.L.W. Chan, J. Phys. D Appl. Phys. 42, 035411 (2009)CrossRefGoogle Scholar
  29. 29.
    T. Lee, K.W. Kwok, H.L.W. Chan, J. Phys. D Appl. Phys. 41, 155402 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jialiang Liu
    • 1
  • Juan Du
    • 1
  • Zhijun Xu
    • 1
  • Ruiqing Chu
    • 1
  • Xiujie Yi
    • 1
  • Jigong Hao
    • 1
  • Renfei Cheng
    • 1
  1. 1.School of Materials Science and EngineeringLiaocheng UniversityLiaochengChina

Personalised recommendations