Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 26, Issue 12, pp 10217–10224 | Cite as

Effect of Dy2O3 doping on microstructure, electrical and dielectric properties of ZnO–V2O5-based varistor ceramics

  • Choon-W. Nahm
Article

Abstract

The effect of Dy2O3 doping on the microstructure, electrical and dielectric properties of ZnO–V2O5-based varistor ceramics was systematically investigated. The average grain size decreased from 5.5 to 5.2 μm to a small extent until the amount of the doped Dy2O3 reaches 0.1 mol%. The sintered densities of the doped samples also increased from 5.51 to 5.58 g/cm3 to a small extent with increasing Dy2O3 amount. The breakdown field increased from 4552 to 5117 V/cm until the amount of the doped Dy2O3 reaches 0.1 mol%. The sample doped with 0.1 mol% Dy2O3 exhibited good non-ohmic properties: 53.3 in the non-ohmic coefficient, and 0.21 mA/cm2 in the leakage current density. In addition, the dielectric constant and dissipation factor exhibited a minimum value, 713.1 and 0.205 at 0.1 mol%, respectively.

Keywords

Leakage Current Density Dissipation Factor Sintered Pellet Dy2O3 Breakdown Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L.M. Levinson, H.R. Pilipp, Am. Ceram. Soc. Bull. 65, 639 (1986)Google Scholar
  2. 2.
    T.K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990)CrossRefGoogle Scholar
  3. 3.
    D.R. Clarke, J. Am. Ceram. Soc. 82, 485 (1999)CrossRefGoogle Scholar
  4. 4.
    M. Matsuoka, Jpn. J. Appl. Phys. 10, 736 (1971)CrossRefGoogle Scholar
  5. 5.
    K. Mukae, K. Tsuda, S. Shiga, IEEE Trans. Power Deliv. 3, 591 (1988)CrossRefGoogle Scholar
  6. 6.
    C.-W. Nahm, Mater. Lett. 47, 182 (2001)CrossRefGoogle Scholar
  7. 7.
    J.K. Tsai, T.B. Wu, J. Appl. Phys. 76, 4817 (1994)CrossRefGoogle Scholar
  8. 8.
    J.K. Tsai, T.B. Wu, Mater. Lett. 26, 199 (1996)CrossRefGoogle Scholar
  9. 9.
    C.T. Kuo, C.S. Chen, I.N. Lin, J. Am. Ceram. Soc. 81, 2942 (1998)CrossRefGoogle Scholar
  10. 10.
    C.T. Kuo, C.S. Chen, I.N. Lin, J. Am. Ceram. Soc. 81, 2949 (1998)CrossRefGoogle Scholar
  11. 11.
    H.H. Hng, P.L. Chan, Ceram. Int. 30, 1647 (2004)CrossRefGoogle Scholar
  12. 12.
    C.-W. Nahm, Solid State Commun. 143, 4536 (2007)CrossRefGoogle Scholar
  13. 13.
    H.H. Hng, K.Y. Tse, Ceram. Int. 34, 1153 (2008)CrossRefGoogle Scholar
  14. 14.
    H.H. Hng, P.L. Chan, Ceram. Int. 35, 409 (2009)CrossRefGoogle Scholar
  15. 15.
    C.-W. Nahm, J. Mater. Sci. Mater. Electron. 24, 27 (2013)CrossRefGoogle Scholar
  16. 16.
    C.-W. Nahm, J. Mater. Sci. Mater. Electron. 24, 4839 (2013)CrossRefGoogle Scholar
  17. 17.
    C.-W. Nahm, J. Mater. Sci. Mater. Electron. 26, 168 (2015)Google Scholar
  18. 18.
    C.-W. Nahm, J. Mater. Sci. Mater. Electron. 26, 4144 (2015)CrossRefGoogle Scholar
  19. 19.
    J.C. Wurst, J.A. Nelson, J. Am. Ceram. Soc. 55, 109 (1972)CrossRefGoogle Scholar
  20. 20.
    M. Mukae, K. Tsuda, I. Nagasawa, Jpn. J. Appl. Phys. 16, 1361 (1977)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Semiconductor Ceramics Laboratory, Department of Electrical EngineeringDongeui UniversityBusanKorea

Personalised recommendations