Prediction model of lifetime for copper pillar bumps under coupling effects of current and thermal cycling

  • Huicai Ma
  • Jingdong Guo
  • Jianqiang Chen
  • Di Wu
  • Zhiquan Liu
  • Qingsheng Zhu
  • Jianku Shang
  • Li Zhang
  • Hongyan Guo


Considering the current induced voids flow will accelerate the creep strain rate and lower the strength of the solder, a current induced activation energy change, ΔQe is added in the Anand model. A lifetime prediction model was constructed based on linear damage rule for the current-thermal cycling coupling test. To verify the accuracy of the model, mean-time-to-failure (MTTF) of copper pillar has been experimentally and analytically investigated under the combination of thermal cycling with temperature range of −40 to 125 °C and a superimposed electric current with current densities of 17.4–22.4 × 104 A/cm2. The experimental results reveal that the MTTF sharply decreases with the increasing current density. The acceleration factors are calculated, which is consistent well with the prediction model.


Solder Joint Acceleration Factor Creep Damage Creep Strain Rate Plastic Strain Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Natural Science Foundation of China, Grant Nos. 51171191 and 51471180, the Major National Science and Technology Program of China, Grant No. 2011ZX02602, and Natural Science Foundation of Liaoning Province, Grant No. 2013020015.


  1. 1.
    K.N. Tu, A.M. Gusak, M. Li, J. Appl. Phys. 93(3), 1335 (2003)CrossRefGoogle Scholar
  2. 2.
    W.W. Lee, L.T. Nguyen, G.S. Selvaduray, Microelectron. Reliab. 40(2), 231 (2000)CrossRefGoogle Scholar
  3. 3.
    L. Zhang, L. Sun, Y.H. Guo, C.W. He, J. Mater. Sci. Mater. Electron. 25(3), 1209 (2014)CrossRefGoogle Scholar
  4. 4.
    S. Bergman, K.N. Subramanian, J. Mater. Sci. Mater. Electron. 23(7), 1442 (2012)CrossRefGoogle Scholar
  5. 5.
    A.R. Grone, J. Phys. Chem. Solids 20(1–2), 88 (1961)CrossRefGoogle Scholar
  6. 6.
    R. An, Y.H. Tian, R. Zhang, C.Q. Wang, J. Mater. Sci. Mater. Electron. 26(5), 2674 (2015)CrossRefGoogle Scholar
  7. 7.
    B.H. Kwak, M.H. Jeong, J.W. Kim, B. Lee, H.J. Lee, Y.B. Park, Microelectron. Eng. 89, 65 (2012)CrossRefGoogle Scholar
  8. 8.
    D. Kim, J.H. Chang, J. Park, J.J. Pak, J. Mater. Sci. Mater. Electron. 22(7), 703 (2011)CrossRefGoogle Scholar
  9. 9.
    H. Gan, K.N. Tu, J. Appl. Phys. 97(6), 063514 (2005)CrossRefGoogle Scholar
  10. 10.
    Y.C. Chan, D. Yang, Prog. Mater Sci. 55(5), 28 (2010)CrossRefGoogle Scholar
  11. 11.
    Y. Zuo, L. Ma, S. Liu, T. Wang, F. Guo, X. Wang, J. Mater. Sci. 48(6), 2318 (2012)CrossRefGoogle Scholar
  12. 12.
    L. Ma, Y. Zuo, S. Liu, F. Guo, X. Wang, J. Appl. Phys. 113(4), 044904 (2013)CrossRefGoogle Scholar
  13. 13.
    T. Laurila, T. Mattila, V. Vuorinen, J. Karppinen, J. Li, M. Sippola, J.K. Kivilahti, Microelectron. Reliab. 47(7), 1135 (2007)CrossRefGoogle Scholar
  14. 14.
    G. Zhao, F. Yang, Mater. Sci. Eng., A 591, 97 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Musallam, C. Yin, C. Bailey, C.M. Johnson, Microelectron. Reliab. 54(1), 172 (2014)CrossRefGoogle Scholar
  16. 16.
    B. Rodgers, J. Punch, J. Jarvis, The Eighth Intersociety Conference on, IEEE, 993 (2002). doi: 10.1109/ITHERM.2002.1012565
  17. 17.
    X.W. Liu, W.J. Plumbridge, J. Electron. Mater. 36(9), 1111 (2007)CrossRefGoogle Scholar
  18. 18.
    G.O.G. Henaff, G. Benoit et al., Int. J. Fatigue 31(11–12), 51 (2009)Google Scholar
  19. 19.
    S.B. Brown, K.H. Kim, L. Anand, Int. J. Plast. 5(2), 95 (1989)CrossRefGoogle Scholar
  20. 20.
    J.H.L. Pang, T. Tan, S.K. Sitaraman, ECTC, 878 (1998). doi: 10.1109/ECTC.1998.678811
  21. 21.
    L. Anand, J. Eng. Mater. Tech. 104(1), 6 (1982)CrossRefGoogle Scholar
  22. 22.
    X.C. Ning Bai, Hong Gao, Mater. Des. 30(30), 7 (2009)Google Scholar
  23. 23.
    H.-C. Ma, J.-D. Guo, J.-Q. Chen, D. Wu, Z.-Q. Liu, Q.-S. Zhu, J.K. Shang, L. Zhang, H.-Y. Guo, J. Mater. Sci. Mater. Electron. 20(10), 7690 (2015)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Huicai Ma
    • 1
  • Jingdong Guo
    • 1
  • Jianqiang Chen
    • 1
  • Di Wu
    • 1
  • Zhiquan Liu
    • 1
  • Qingsheng Zhu
    • 1
  • Jianku Shang
    • 2
  • Li Zhang
    • 3
  • Hongyan Guo
    • 3
  1. 1.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  2. 2.Department of Materials Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.Jiangyin Changdian Advanced Packaging Co., Ltd.JiangyinChina

Personalised recommendations