Improved near-infrared up-conversion emission of YAG:Yb,Tm phosphor substituted by Gallium and Indium

  • Qian Liu
  • Wei Zhang
  • Zheng-fa Hu
  • Zu-yong Feng
  • Lun Ma
  • Xiu-ping Zhang
  • Xia Sheng
  • Jie Luo


Gallium–Indium co-substituted yttrium aluminum garnet (YAG:Yb,Tm) phosphors were synthesized by co-precipitation method. It can be seen that gallium and indium ions co-substitution didn’t change the phase of YAG. The upconversion luminescence (UCL) properties of the Gallium–Indium co-substituted (YAG:Yb,Tm) samples were measured under 980 nm excitation. The effects of different In3+concentration on the luminescence properties of Gallium–Indium co-substituted (YAG:Yb,Tm) were also investigated. The fluorescence-lifetime investigation shows that the substitution of Ga3+ and In3+ has a significant influence on energy transfer between Yb3+ and Tm3+ in the YAG samples.


Gallium In2O3 Yb2O3 Upconversion Luminescence Upconversion Emission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the National Natural Science Foundation of China (Grant No. 11304045), Guangdong Excellent Talents Project (Grant No. 400140095), and Guangdong Provincial Science and Technology Project (Grant No. 2013B090700006).


  1. 1.
    P.H. González, I.R. Martín, S.G. Pérez, M. Liu, S.W. Wang, N. Capuj, F. Lahoz, Increase of the blue upconversion emission in YAG:Tm3+ nanopowders by codoping with Yb3+ ions. J. Lumin. 128, 924–926 (2008)CrossRefGoogle Scholar
  2. 2.
    L. Guerbous, A. Boukerika, Nanomaterial host bands effect on the photoluminescence properties of Ce-doped YAG nanophosphor synthesized by sol–gel method. J. Nanomater. 617130, 1–10 (2015)CrossRefGoogle Scholar
  3. 3.
    S.X. Liu, W. Zhang, Z.F. Hu, Z.Y. Feng, X. Sheng, Y.L. Liang, Synthesis and luminescent properties of Eu3+ and Dy3+ doped BiPO4 phosphors for near UV-based white LEDs. J. Mater. Sci. Mater. Electron. 24, 4253–4257 (2013)CrossRefGoogle Scholar
  4. 4.
    Y. Zorenko, V. Gorbenko, V. Savchyn, M. Batentschuk, A. Osvet, C. Brabec, Luminescence properties and energy transfer processes in YAG:Yb,Er single crystalline films. Radiat. Meas. 56, 134–138 (2013)CrossRefGoogle Scholar
  5. 5.
    H.K. Yang, J.H. Oh, B.K. Moon, J.H. Jeong, S.S. Yi, Photo luminescent properties of near-infrared excited blue emission in Yb, Tm co-doped LaGaO3 phosphors. Ceram. Int. 40, 13357–13361 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Fukushima, T. Furukawa, H. Niioka, M. Ichimiya, J. Miyake, M. Ashida, T. Araki, M. Hashimoto, Y2O3:Tm, Yb nanophosphors for correlative upconversion luminescence and cathodeluminescence imaging. Micron 67, 90–95 (2014)CrossRefGoogle Scholar
  7. 7.
    W.W. Xu, X.D. Xu, F. Wu, G.J. Zhao, Z.W. Zhao, G.Q. Zhou, J. Xu, Infrared to visible upconversion fluorescence in Yb, Tm:YAG single crystal. Opt. Commun. 272, 182–185 (2007)CrossRefGoogle Scholar
  8. 8.
    X.J. Pei, Y.B. Hou, S.L. Zhao, Z. Xu, F. Teng, Frequency upconversion of Tm3+ and Yb3+ codoped YLiF4 synthesized by hydrothermal method. Mater. Chem. Phys. 90, 270–274 (2005)CrossRefGoogle Scholar
  9. 9.
    I.R. Martín, V.D. Rodríguez, V. Lavín, U.R.R. Mendoza, Infrared, blue and ultraviolet upconversion emissions in Yb3+−Tm3+−doped fluoroindate glasses. Spectrochim. Acta Part A 55, 941–945 (1999)CrossRefGoogle Scholar
  10. 10.
    W.X. Zhang, J. Zhou, W.B. Liu, J. Li, L. Wang, B.X. Jiang, Y.B. Pan, X.J. Cheng, J.Q. Xu, Fabrication, properties and laser performance of Ho:YAG transparent ceramic. J. Alloys Compd. 506, 745–748 (2010)CrossRefGoogle Scholar
  11. 11.
    G.S. Qin, J.R. Lu, J.F. Bisson, Y. Feng, K. Ueda, H. Yagi, T. Yanagitani, Upconversion luminescence of Er3+ in highly transparent YAG ceramics. Solid State Commun. 132, 103–106 (2004)CrossRefGoogle Scholar
  12. 12.
    L.A. Diaz-Torres, E. De la Ros, P. Salas, H. Desirena, Enhanced cooperative absorption and upconversion in Yb3+ doped YAG nanophosphors. Opt. Mater. 27, 1305–1310 (2005)CrossRefGoogle Scholar
  13. 13.
    H.T. Yuan, Y.J. Qiao, H. Yang, Preparation and luminescent properties of doped with Eu3+ ions YVO4 nanophosphors. J. Mater. Sci. Mater. Electron. 25, 4001–4003 (2014)CrossRefGoogle Scholar
  14. 14.
    J.Y. Chong, Y.L. Zhang, B.K. Wagner, Z.T. Kang, Co-precipitation synthesis of YAG: Dy nanophosphor and its thermometric properties. J. Alloys Compd. 581, 484–487 (2013)CrossRefGoogle Scholar
  15. 15.
    X. Li, H. Liu, J.Y. Wang, H.M. Cui, F. Han, YAG: Ce nano-sized phosphor particles prepared by a solvothermal method. Mater. Res. Bull. 39, 1923–1930 (2004)CrossRefGoogle Scholar
  16. 16.
    Y. Hakuta, T. Haganuma, K. Sue, T. Adschiri, K. Arai, Continuous production of phosphor YAG: Tb nanoparticles by hydrothermal synthesis in supercritical water. Mater. Res. Bull. 38, 1257–1265 (2003)CrossRefGoogle Scholar
  17. 17.
    H.M.H. Fadlalla, C.C. Tang, E.M. Elssfah, F. Shi, Synthesis and characterization of single crystalline YAG: Eu nano-sized powder by sol–gel method. Mater. Chem. Phys. 109, 436–439 (2008)CrossRefGoogle Scholar
  18. 18.
    M.L. Saladino, E. Caponetti, Co-precipitation synthesis of Nd:YAG nanopowders II: The effect of Nd dopant addition on luminescence properties. Opt. Mater. 32, 89–93 (2009)CrossRefGoogle Scholar
  19. 19.
    S.W. Allison, J.R. Buczyna, R.A. Hanswl, D.G. Walker, G.T. Gillies, Temperature-dependent fluorescence decay lifetimes of the phosphor Y3(Al0.5Ga0.5)5O12:Ce 1%. J. Appl. Phys. 105, 036105 (2009)CrossRefGoogle Scholar
  20. 20.
    M. Liu, S.W. Wang, J. Zhang, L.Q. An, L.D. Chen, Upconversion luminescence of Y3Al5O12(YAG):Yb3+,Tm3+ nanocrystals. Opt. Mater. 30, 370–374 (2007)CrossRefGoogle Scholar
  21. 21.
    Z.W. Zhang, L. Liu, Y.H. Wang, S.T. Song, D.J. Wang, Preparation and luminescence properties of Sr7Zr(PO4)6:Dy3+ single-phase full-color phosphor. J. Mater. Sci. Mater. Electron. 26, 4202–4206 (2015)CrossRefGoogle Scholar
  22. 22.
    W. Zhang, S.X. Liu, Z.F. Hu, Y.L. Liang, Z.Y. Feng, X. Sheng, Preparation of YBO3:Dy3+,Bi3+ phosphors and enhanced photoluminescence Mater. Sci. Eng. B 187, 108–112 (2014)CrossRefGoogle Scholar
  23. 23.
    E.H. Song, W.R. Zhao, W. Zhang, H.C. Ming, Y.C. Yi, M.K. Zhou, Fluorescence emission spectrum and energy transfer in Eu and Mn co-doped Ba2Ca(BO3)2 phosphors. J. Lumin. 130, 2495–2499 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Physics and Optoelectronic EngineeringGuangdong University of TechnologyGuangdongChina
  2. 2.Department of PhysicsThe University of Texas at ArlingtonArlingtonUSA
  3. 3.Cancer Center of Guangzhou Medical UniversityGuangdongChina

Personalised recommendations