Effect of B-site dopants Nb, Ta and W on microstructure and electrical properties of Ca0.85(Li, Ce)0.075Bi4Ti4O15-0.01MnCO3 piezoelectric ceramics

  • Deqiong Xin
  • Zhihang Peng
  • Fengkang Huang
  • Qiang Chen
  • Jiagang Wu
  • Yadan Wang
  • Xi Yue
  • Dingquan Xiao
  • Jianguo Zhu


(Li, Ce) and Mn modified CaBi4Ti4O15 (CBT) based ceramics were prepared by the solid state route, and were substituted by the equimolar ions of Nb5+, Ta5+ and W6+ in the B-site. The variations of crystalline structure, microstructure, piezoelectric properties and dielectric properties were investigated. The XRD patterns indicated that all compositions formed a single bismuth layered-structural phase with m = 4. The additions of Nb2O5, Ta2O5 and WO3 into CBT-based ceramics were found to affect the electrical properties and temperature stability of the ceramics. Compared with Ta2O5 and WO3, the Nb-substitued ceramics exhibited the optimum piezoelectric property and dielectric property (d 33 ~ 19.6 pC/N, ε r ~ 123.7 and tanδ ~ 0.1 %) among all of these samples, together with a high Curie-temperature (T C ~ 767.6 °C). Thermally activated depolarization behavior also demonstrated that the Nb5+ doped CBT-based ceramics possess outstanding thermal stability of piezoelectric properties. These results indicated that Nb2O5 has a substantial effect on the structure and properties of CBT-based ceramics compared to Ta2O5 and WO3.


Dielectric Property Dielectric Loss Nb2O5 Piezoelectric Property Piezoelectric Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Natural Science Foundation of China (NSFC Nos. 61201064 and 51332003).


  1. 1.
    D. Lin, Q. Zheng, Y. Li, Y. Wan, Q. Li, W. Zhou, Microstructure, ferroelectric and piezoelectric properties of Bi0.5K0.5TiO3-modified BiFeO3–BaTiO3 lead-free ceramics with high Curie temperature. J. Eur. Ceram. Soc. 33, 3023–3036 (2013)CrossRefGoogle Scholar
  2. 2.
    L. Shi, B. Zhang, Q. Liao, L. Zhu, L. Zhao, D. Zhang, D. Guo, Piezoelectric properties of Fe2O3 doped BiYbO3–Pb(Zr, Ti)O3 high Curie temperature ceramics. Ceram. Int. 40, 11485–11491 (2014)CrossRefGoogle Scholar
  3. 3.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)CrossRefGoogle Scholar
  4. 4.
    S.K. Patri, R.N.P. Choudhary, Solid solutions of bismuth-based Aurivillius oxides: structural and dielectric characterization. Appl. Phys. A 94, 321–327 (2009)CrossRefGoogle Scholar
  5. 5.
    X. Zheng, X. Huang, C. Gao, Study on ferroelectric and dielectric properties of La-doped CaBi4Ti4O15 based ceramics. J. Rare Earths 25, 168–172 (2007)CrossRefGoogle Scholar
  6. 6.
    H. Hao, H.X. Liu, M.H. Cao, X.M. Min, S.X. Ouyang, Study of A-site doping of SrBi4Ti4O15 Bi-layered compounds using micro-Raman spectroscopy. Appl. Phys. A 85, 69–73 (2006)CrossRefGoogle Scholar
  7. 7.
    P.K. Panda, Review: environmental friendly lead-free piezoelectric materials. J. Mater. Sci. 44, 5049–5062 (2009)CrossRefGoogle Scholar
  8. 8.
    Z.G. Yi, Y.X. Li, Y. Liu, Ferroelectric and piezoelectric properties of Aurivillius phase intergrowth ferroelectrics and the underlying materials design. Phys. Status Solidi A 208, 1035–1040 (2011)CrossRefGoogle Scholar
  9. 9.
    X. Huang, Z. Chen, X. Zheng, C. Gao, H. Guan, C. Zhao, Dielectric and piezoelectric properties of Ca1-x(Li, Ce)x/2Bi4Ti4O15 ceramics. J. Rare Earths 25, 158–162 (2007)Google Scholar
  10. 10.
    C.M. Wang, J.F. Wang, J.A. Ceram, Aurivillius phase potassium bismuth titanate: K0.5Bi4.5Ti4O15. J. Am. Ceram. Soc. 91, 918–923 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Kumar, S. Kundu, D.A. Ochoa, J.E. Garcia, K.B.R. Varma, Raman scattering, microstructural and dielectric studies on Ba1−xCaxBi4Ti4O15 ceramics. Mater. Chem. Phys. 136, 680–687 (2012)CrossRefGoogle Scholar
  12. 12.
    J.R. Gomah-Pettry, E. Said, P. Marchet, M. Jean-Pierre, Sodium-bismuth titanate based lead-free ferroelectric materials. J. Eur. Ceram. Soc. 24, 1165–1169 (2004)CrossRefGoogle Scholar
  13. 13.
    Z.G. Gai, Y.Y. Feng, J.F. Wang, M.L. Zhao, L.M. Zheng, C.M. Wang, S.J. Zhang, T.R. Shrout, The effect of (Li, Ce) doping in Aurivillius phase material (Na0.52K0.42Li0.06)0.5Bi2.5(Nb1.88Sb0.06Ta0.06)O9. Phys. Status Solidi A 207, 1792–1795 (2010)CrossRefGoogle Scholar
  14. 14.
    H.T. Zhang, H.X. Yan, M.J. Reece, The effect of Nd substitution on the electrical properties of Bi3NbTiO9 Aurivillius phase ceramics. J. Appl. Phys. 106, 044106 (2009)CrossRefGoogle Scholar
  15. 15.
    W. Wang, D. Shan, J.B. Sun, X.Y. Mao, X.B. Chen, Aliovalent B-site modification on three- and four-layer. Aurivillius intergrowth. J. Appl. Phys. 103, 044102 (2008)CrossRefGoogle Scholar
  16. 16.
    Z. Peng, Q. Chen, D. Liu, Y. Wang, D. Xiao, J. Zhu, Evolution of microstructure and dielectric properties of (LiCe)-doped Na0.5Bi2.5Nb2O9 Aurivillius type ceramics. Curr. Appl. Phys. 13, 1183–1187 (2013)CrossRefGoogle Scholar
  17. 17.
    H. Chen, B. Shen, X. Jinbao, J. Zhai, Textured Ca0.85(Li, Ce)0.15Bi4Ti4O15 ceramics for high temperature piezoelectric applications. Mater. Res. Bull. 47, 2530–2534 (2012)CrossRefGoogle Scholar
  18. 18.
    C.L. Diao, H.W. Zheng, Y.Z. Gu, W.F. Zhang, L. Fang, Structural and electrical properties of four-layers Aurivillius phase BaBi3.5Nd0.5Ti4O15 ceramics. Ceram. Int. 40, 5765–5769 (2014)CrossRefGoogle Scholar
  19. 19.
    P. Fang, P. Liu, Z. Xi, W. Long, X. Li, Structure and electrical properties of new Aurivillius oxides (K0.16Na0.84)0.5Bi4.5Ti4O15 with manganese modification. J. Alloys Compd. 595, 148–152 (2014)CrossRefGoogle Scholar
  20. 20.
    A. Tanwar, M. Verma, V. Gupta, K. Sreenivas, A-site substitution effect of strontium on bismuth layered CaBi4Ti4O15 ceramics on electrical and piezoelectric properties. Mater. Chem. Phys. 130, 95–103 (2011)CrossRefGoogle Scholar
  21. 21.
    H.X. Yan, Z. Zhang, W.M. Zhu, The effect of (Li, Ce) and (K, Ce) doping in Aurivillius phase material CaBi4Ti4O15. Mater. Res. Bull. 39, 1237–1246 (2004)CrossRefGoogle Scholar
  22. 22.
    J. Zeng, Y. Li, D. Wang, Q. Yin, Electrical properties of neodymium doped CaBi4Ti4O15 ceramics. Solid State Comm. 133, 553–557 (2005)CrossRefGoogle Scholar
  23. 23.
    Y.Y. Yao, C.H. Song, P. Bao, D. Su, X.M. Lu, J.S. Zhu, Y.N. Wang, Doping effect on the dielectric property in bismuth titanate. J. Appl. Phys. 95, 3126 (2004)CrossRefGoogle Scholar
  24. 24.
    Z. Zhou, X. Dong, H. Chen, Structural and electrical properties of W6+-doped Bi3TiNbO9 high-temperature piezoceramics. J. Am. Ceram. Soc. 89, 1756 (2006)CrossRefGoogle Scholar
  25. 25.
    J.T. Zeng, Y. Wang, Y.X. Li, Q.B. Yang, Q.R. Yin, Ferroelectric and piezoelectric properties of tungsten doped CaBi4Ti4O15 ceramics. J. Electroceram. 21, 305–308 (2008)CrossRefGoogle Scholar
  26. 26.
    S.J. Zhang, N. Kim, T.R. Shrout, High temperature properties of manganese modified CaBi4Ti4O15 ferroelectric ceramics. Solid State Commun. 140, 154–158 (2006)CrossRefGoogle Scholar
  27. 27.
    D.G. Gu, G.R. Li, L.Y. Zheng, Electrical properties of Mn modified CaBi4Ti4O15 piezoelectrics for high temperature application. J. Inorg. Mater. 23, 626–630 (2008)CrossRefGoogle Scholar
  28. 28.
    P. Fang, P. Liu, Z. Xi, W. Long, X. Li, Effect of cerium additives on structure and electrical properties of Aurivillius oxides (K0.16Na0.84)0.5Bi4.5Ti4O15. Mater. Sci. Eng., B 186, 21–25 (2014)CrossRefGoogle Scholar
  29. 29.
    L.B. McCusker, R.B. Von Dreele, D.E. Cox et al., Rietveld refinement guidelines. J Appl Cryst. 32, 36–50 (1999)CrossRefGoogle Scholar
  30. 30.
    S.L. Chauhan, M. Kumar, S. Chhoker et al., Multiferroic, magnetoelectric and optical properties of Mn doped BiFeO3 nanoparticles. Solid State Commun. 152, 525–529 (2012)CrossRefGoogle Scholar
  31. 31.
    Z.H. Peng, Q. Chen, J.G. Wu, Dielectric properties and impedance analysis in Aurivillius-type (Na0.25K0.25Bi0.5)1-x(LiCe)x/2[]x/2Bi4Ti4O15 ceramics. J Alloys Compd 541, 310–316 (2012)CrossRefGoogle Scholar
  32. 32.
    D.Y. Suarez, I.M. Reaney, W.E. Lee, Relation between tolerance factor and T C in Aurivillius compounds. J. Mater. Res. 16, 3139–3149 (2001)CrossRefGoogle Scholar
  33. 33.
    W. Cai, F. Chunlin, Z. Lin, X. Deng, Vanadium doping effects on microstructure and dielectric properties of barium titanate ceramics. Ceram. Int. 37, 3643–3650 (2011)CrossRefGoogle Scholar
  34. 34.
    S.K. Rout, A. Hussain, E. Sinha, C.W. Ahn, I.W. Kim, Electrical anisotropy in the hot-forged CaBi4Ti4O15 ceramics. Solid State Sci. 11, 1144–1149 (2009)CrossRefGoogle Scholar
  35. 35.
    H.X. Yan, C.G. Li, J.G. Zhou, W.M. Zhu, L.X. He, Y.X. Song, Y.H. Yu, Influence of sintering temperature on the properties of high T-c bismuth layer structure ceramics. Mater. Sci. Eng., B 88, 62–67 (2002)CrossRefGoogle Scholar
  36. 36.
    X. He, B. Wang, F. Xiaoyi, Z. Chen, Structural, electrical and piezoelectric properties of V-, Nb- and W-substituted CaBi4Ti4O15 ceramics. J. Mater. Sci.: Mater. Electron. 25, 3396–3402 (2014)Google Scholar
  37. 37.
    I. Coondoo, A.K. Jha, Enhancement of ferroelectric and piezoelectric characteristics in europium substituted SrBi2Ta2O9 ferroelectric ceramics. Mater. Lett. 63, 48–50 (2009)CrossRefGoogle Scholar
  38. 38.
    X. Zhang, H. Yan, M.J. Reece, Effect of a site substitution on the properties of CaBi2Nb2O9 ferroelectric ceramics. J. Am. Ceram. Soc. 91, 2928–2932 (2008)CrossRefGoogle Scholar
  39. 39.
    X.X. Tian, S.B. Qu, H.L. Du et al., Effects of (Li Ce) co-substitution on the structural and electrical properties of CaBi2Nb2O9 ceramics. Chin. Phys. B 21, 037701 (2012)CrossRefGoogle Scholar
  40. 40.
    E.C. Subbarao, Family of ferroelectric bismuth compounds. J. Phys. Chem. Solids 23, 665–676 (1962)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Deqiong Xin
    • 1
  • Zhihang Peng
    • 1
  • Fengkang Huang
    • 1
  • Qiang Chen
    • 1
  • Jiagang Wu
    • 1
  • Yadan Wang
    • 1
  • Xi Yue
    • 1
  • Dingquan Xiao
    • 1
  • Jianguo Zhu
    • 1
  1. 1.College of Materials Science and EngineeringSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations