Advertisement

Permeability and electromagnetic wave absorption properties of sintered barium hexaferrites with substitution of Co2+–Zr4+

  • Yankui Cheng
  • Xiaohu Ren
Article

Abstract

The Co2+–Zr4+ substituted M-type barium hexaferrites with the chemical formula BaCoxZrxFe12−2xO19 (x = 0.0, 0.3, 0.6, 0.9 and 1.2) were synthesized by a sol–gel auto-combustion method. The structural characterizations of the prepared samples were studied using X-ray diffraction and scanning electron microscopy. The complex permeability (μ = μ′ − ″) was measured on sintered samples in the frequency range of 100 MHz–3 GHz, and the electromagnetic wave absorbing characteristics of the prepared ferrites with various x value were evaluated from measurements of complex permeability. The results showed that the value of μ and the resonance frequency can be justified by controlling the substituting contents of Co2+–Zr4+. The reflection loss calculations showed that Co2+–Zr4+ substituted barium hexaferrites are good EM-wave absorbers in the quasi-microwave band (1–3 GHz).

Keywords

Ferrite Reflection Loss Magnetocrystalline Anisotropy Eddy Current Loss Barium Ferrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R.S. Meena, S. Bhattachrya, R. Chatterjee, J. Magn. Magn. Mater. 322, 1923 (2010)CrossRefGoogle Scholar
  2. 2.
    W. Lee, J. Lee, C. Kim, Compos. Sci. Technol. 68, 2485 (2008)CrossRefGoogle Scholar
  3. 3.
    K. Sakai, Y. Wada, Y. Sato, S. Yoshikado, Key Eng. Mater. 421, 451 (2010)Google Scholar
  4. 4.
    Y. Qing, W. Zhou, F. Luo, D. Zhu, Carbon 48, 4074 (2010)CrossRefGoogle Scholar
  5. 5.
    Z. Wang, Z. Zhang, S. Qin, Mater. Design. 29, 1777 (2008)CrossRefGoogle Scholar
  6. 6.
    R.C. Pullar, Prog. Mater Sci. 57, 1191 (2012)CrossRefGoogle Scholar
  7. 7.
    M.R. Meshrama, N.K. Agrawal, B. Sinha, P.S. Misra, J. Magn. Magn. Mater. 271, 207 (2004)CrossRefGoogle Scholar
  8. 8.
    H. Zhang, L. Zhichao, Y. Xi, Mater. Sci. Eng. B 96, 289 (2002)CrossRefGoogle Scholar
  9. 9.
    M.V. Cabanas, J.M. Conzalez-Calbet, J. Rodriguez-Carvajal, M. Vallet-Regi, J. Solid State Chem. 111, 229 (1994)CrossRefGoogle Scholar
  10. 10.
    H. Ota, M. Kimura, R. Sato, K. Okayama, S. Kondo, M. Homma, IEEE Trans. Magn. 35, 590 (1999)Google Scholar
  11. 11.
    N. Dishovske, A. Petkov, I. Nedkov, IEEE Trans. Magn. 30, 969 (1994)CrossRefGoogle Scholar
  12. 12.
    X.H. Ren, G.L. Xu, J. Magn. Magn. Mater. 354, 44 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Ghasemi, A. Hossienpour, A. Morisako, A. Saatchi, M. Salehi, J. Magn. Magn. Mater. 302, 429 (2006)CrossRefGoogle Scholar
  14. 14.
    K. Watanabe, J. Kawabe, J. Mater. Chem. 7, 1797 (1997)CrossRefGoogle Scholar
  15. 15.
    M.V. Rane, D. Bahadur, S.K. Mandal, M.J. Patni, J. Magn. Magn. Mater. 153, L1 (1996)CrossRefGoogle Scholar
  16. 16.
    S. Bierlich, J. Töpfer, IEEE Trans. Magn. 48, 1556 (2012)CrossRefGoogle Scholar
  17. 17.
    R. Dosoudil, J. Franek, J. Sláma, M. Ušáková, A. Grusková, IEEE Trans. Magn. 48, 1524 (2012)CrossRefGoogle Scholar
  18. 18.
    J. Smit, H.M.J. Wijn, Ferrite (Philips Technical Library, Eindhoven, 1962), pp. 316–320Google Scholar
  19. 19.
    Y. Naito, K. Suetake, IEEE Trans. Microw. Theory Tech. 19, 65 (1971)CrossRefGoogle Scholar
  20. 20.
    R. Dosoudil, M. Ušáková, J. Franek, J. Sláma, A. Grusková, IEEE Trans. Magn. 46, 436 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Modern ManufacturingYibin Vocational and Technical CollegeYibinPeople’s Republic of China
  2. 2.State Key Laboratory of Solidification Processing, School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations