Skip to main content

Advertisement

Log in

Photoelectrochemical degradation of eosin yellowish dye on exfoliated graphite–ZnO nanocomposite electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the quest for harnessing more power from the sun for water treatment by photoelectrochemical degradation, we prepared a novel photoanode of exfoliated graphite (EG)–ZnO nanocomposite. The nanocomposite was characterised by X-ray diffractometry, energy dispersive spectroscopy, Brunauer–Emmett–Teller surface area analyser, thermal gravimetric analyser, and X-ray photoelectron spectroscopy. The EG–ZnO nanocomposite was fabricated into a photoanode and applied for the photoelectrochemical degradation of 0.1 × 10−4 M eosin yellowish dye in 0.1 M Na2SO4 under visible light irradiation. The degradation was monitored with a visible spectrophotometer. The photoelectrochemical degradation process resulted in enhanced degradation efficiency of ca. 93 % with kinetic rate of 11.0 × 10−3 min−1 over photolysis and electrochemical oxidation processes which exhibited lower degradation efficiencies of 35 and 40 % respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Masmoudi, R. Trabelsi, E. Ellouze, R.B. Amar, Int. J. Environ. Sci. Technol. 11, 1007–1016 (2014)

    Article  Google Scholar 

  2. N.S. Arul, D. Mangalaraj, J.I. Han, J. Mater. Sci. Mater. Electron. 26, 1441–1448 (2015)

    Article  Google Scholar 

  3. B.R. Babu, A.K. Parande, S. Raghu, T. PremKumar, J. Cotton Sci. 11, 141–153 (2007)

    Google Scholar 

  4. E. Erdem, G. Çölgeçen, R. Donat, J. Colloid Interface Sci. 282, 314–319 (2005)

    Article  Google Scholar 

  5. H. Hameed, J. Hazard. Mater. 161, 753–759 (2009)

    Article  Google Scholar 

  6. N. Emmanuel, G. Kumar, Environ. Chem. Lett. 7, 375–379 (2009)

    Article  Google Scholar 

  7. S. Senthikumar, M. Perumalsamy, H.J. Prabhu, C. AhmedBasha, G. Swammathan, Cent. Eur. J. Eng. 3(1), 135–144 (2013)

    Google Scholar 

  8. T.K. Tan, P.S. Khiew, W.S. Chiu, S. Radiman, R. Abd-Shukor, N.M. Huang, H.N. Lim, World Acad. Sci. Eng. Technol. 55, 791–796 (2011)

    Google Scholar 

  9. F.F. Brites, V.S. Santana, N.R.C. Fernandes-Machando, Top. Catal. 54, 264–269 (2011)

    Article  Google Scholar 

  10. P.A. Soares, T.F.C.V. Silva, D.R. Manenti, S.M.A.G.U. Souza, R.A.R. Boaventura, V.J.P. Vilar, Environ. Sci. Pollut. Res. 21, 932–945 (2014)

    Article  Google Scholar 

  11. J. Rathouský, V. Kalousek, M. Kolář, J. Jirkovský, Photochem. Photobiol. Sci. 10, 419–424 (2011)

    Article  Google Scholar 

  12. L.M. AL-Harbi, E.H. El-Mossalamy, Mod. Appl. Sci. 5, 130–135 (2011)

    Google Scholar 

  13. N. Banerjee, Nanotechnol. Sci. Appl. 4, 35–65 (2011)

    Article  Google Scholar 

  14. W. Tang, Q. Wang, X. Zeng, X. Chen, J. Solid State Electrochem. 16, 1429–1445 (2012)

    Article  Google Scholar 

  15. A. Khanna, V.K. Shetty, Sol. Energy 99, 67–76 (2014)

    Article  Google Scholar 

  16. J. Huang, C. Xia, L. Cao, X. Zeng, Mater. Sci. Eng. B 150, 187–193 (2008)

    Article  Google Scholar 

  17. I. Poulios, D. Makri, X. Prohaska, Global NEST 1, 55–62 (1999)

    Google Scholar 

  18. R. Carraway, A.J. Hoffman, M.R. Hoffmann, Environ. Sci. Technol. 28, 786–793 (1994)

    Article  Google Scholar 

  19. S.K. Kansal, M. Singh, D. Sud, J. Hazard. Mater. 141, 581–590 (2007)

    Article  Google Scholar 

  20. Freer J. Lizama, J. Baeza, H.D. Mansilla, Catal. Today 76, 235–239 (2002)

    Article  Google Scholar 

  21. S. Shakthivel, B. Neppolian, M.V. Shankar, B. Arabindo, M. Palanichamy, V. Murugesan, Sol. Energy Mater. Sol. Cells 77, 65–82 (2003)

    Article  Google Scholar 

  22. M.A. Habib, I.M.I. Ismail, A.J. Mahmood, M.R. Ullah, J. Saudi. Chem. Soc. 16, 423–429 (2012)

    Article  Google Scholar 

  23. J. Zhou, F. Zhao, F. Wang, Y. Zhang, L. Yang, J. Lumin. 122, 195–197 (2007)

    Article  Google Scholar 

  24. Z.M. Khoshhesab, M. Sarfaraz, M.A. Asadabad, Synth. React. Inorg. Metal Org. Chem. 41, 814–819 (2011)

    Article  Google Scholar 

  25. JCPDS, Powder Diffraction File, Alphabetical Index, Inorganic Compounds (International Centre for Diffraction Data, Newtown Square, PA, 1977)

    Google Scholar 

  26. B. Ntsendwana, S. Sampath, B.B. Mamba, O.A. Arotiba, Photochem. Photobiol. Sci. 12, 1091–1102 (2013)

    Article  Google Scholar 

  27. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Appl. Surf. Sci. 158, 134–140 (2000)

    Article  Google Scholar 

  28. Z.G. Wang, X.T. Zu, S. Zhu, L.M. Wang, Syst. Nanostruct. 35, 199–202 (2006)

    Google Scholar 

  29. Y. Show, M.A. Witek, P. Sonthalia, G.M. Swain, Chem. Mater. 15, 871–888 (2003)

    Article  Google Scholar 

  30. M.C. Granger, G.M. Swain, J. Electrochem. Soc. 146, 4551–4558 (1999)

    Article  Google Scholar 

  31. S.A. Kumar, S.M. Chen, Anal. Chim. Acta 592, 36–44 (2007)

    Article  Google Scholar 

  32. S.A. Kumar, H.W. Cheng, S.M. Chen, S.F. Wang, Mater. Sci. Eng. C 30, 86–91 (2010)

    Article  Google Scholar 

  33. F. Zhang, J. Zhao, L. Zang, T. Shen, H. Hidaka, E. Pelizzetti, N. Serpone, J. Mol. Catal. A Chem. 120, 173–178 (1997)

    Article  Google Scholar 

  34. P. Canizares, C. Saez, J. Lobato, M.A. Rodrigo, Electrochim. Acta 49, 4641–4650 (2004)

    Article  Google Scholar 

  35. J.M. Kesselman, O. Weres, N.S. Lewis, M.R. Hoffmann, J. Phys. Chem. B 101, 2637–2643 (1997)

    Article  Google Scholar 

  36. S. Klamklang, H. Vergnes, F. Secocq, K. Pruksathorn, P. Duverneuil, S. Damronglerd, J. Appl. Electrochem. 40, 997–1004 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of the following are gratefully acknowledged: Nanotechnology Innovation Centre, Mintek South Africa; The Centre for Nanomaterials Science Research, University of Johannesburg; The Faculty of Science, University of Johannesburg; and The National Research Foundation, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Arotiba.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 792 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntsendwana, B., Sampath, S., Mamba, B.B. et al. Photoelectrochemical degradation of eosin yellowish dye on exfoliated graphite–ZnO nanocomposite electrode. J Mater Sci: Mater Electron 27, 592–598 (2016). https://doi.org/10.1007/s10854-015-3793-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3793-6

Keywords

Navigation