Advertisement

Photoelectrochemical degradation of eosin yellowish dye on exfoliated graphite–ZnO nanocomposite electrode

  • B. Ntsendwana
  • S. Sampath
  • B. B. Mamba
  • O. S. Oluwafemi
  • O. A. Arotiba
Article

Abstract

In the quest for harnessing more power from the sun for water treatment by photoelectrochemical degradation, we prepared a novel photoanode of exfoliated graphite (EG)–ZnO nanocomposite. The nanocomposite was characterised by X-ray diffractometry, energy dispersive spectroscopy, Brunauer–Emmett–Teller surface area analyser, thermal gravimetric analyser, and X-ray photoelectron spectroscopy. The EG–ZnO nanocomposite was fabricated into a photoanode and applied for the photoelectrochemical degradation of 0.1 × 10−4 M eosin yellowish dye in 0.1 M Na2SO4 under visible light irradiation. The degradation was monitored with a visible spectrophotometer. The photoelectrochemical degradation process resulted in enhanced degradation efficiency of ca. 93 % with kinetic rate of 11.0 × 10−3 min−1 over photolysis and electrochemical oxidation processes which exhibited lower degradation efficiencies of 35 and 40 % respectively.

Keywords

Methyl Orange Composite Electrode Redox Probe Exfoliate Graphite Photoelectrochemical Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The financial support of the following are gratefully acknowledged: Nanotechnology Innovation Centre, Mintek South Africa; The Centre for Nanomaterials Science Research, University of Johannesburg; The Faculty of Science, University of Johannesburg; and The National Research Foundation, South Africa.

Supplementary material

10854_2015_3793_MOESM1_ESM.docx (792 kb)
Supplementary material 1 (DOCX 792 kb)

References

  1. 1.
    G. Masmoudi, R. Trabelsi, E. Ellouze, R.B. Amar, Int. J. Environ. Sci. Technol. 11, 1007–1016 (2014)CrossRefGoogle Scholar
  2. 2.
    N.S. Arul, D. Mangalaraj, J.I. Han, J. Mater. Sci. Mater. Electron. 26, 1441–1448 (2015)CrossRefGoogle Scholar
  3. 3.
    B.R. Babu, A.K. Parande, S. Raghu, T. PremKumar, J. Cotton Sci. 11, 141–153 (2007)Google Scholar
  4. 4.
    E. Erdem, G. Çölgeçen, R. Donat, J. Colloid Interface Sci. 282, 314–319 (2005)CrossRefGoogle Scholar
  5. 5.
    H. Hameed, J. Hazard. Mater. 161, 753–759 (2009)CrossRefGoogle Scholar
  6. 6.
    N. Emmanuel, G. Kumar, Environ. Chem. Lett. 7, 375–379 (2009)CrossRefGoogle Scholar
  7. 7.
    S. Senthikumar, M. Perumalsamy, H.J. Prabhu, C. AhmedBasha, G. Swammathan, Cent. Eur. J. Eng. 3(1), 135–144 (2013)Google Scholar
  8. 8.
    T.K. Tan, P.S. Khiew, W.S. Chiu, S. Radiman, R. Abd-Shukor, N.M. Huang, H.N. Lim, World Acad. Sci. Eng. Technol. 55, 791–796 (2011)Google Scholar
  9. 9.
    F.F. Brites, V.S. Santana, N.R.C. Fernandes-Machando, Top. Catal. 54, 264–269 (2011)CrossRefGoogle Scholar
  10. 10.
    P.A. Soares, T.F.C.V. Silva, D.R. Manenti, S.M.A.G.U. Souza, R.A.R. Boaventura, V.J.P. Vilar, Environ. Sci. Pollut. Res. 21, 932–945 (2014)CrossRefGoogle Scholar
  11. 11.
    J. Rathouský, V. Kalousek, M. Kolář, J. Jirkovský, Photochem. Photobiol. Sci. 10, 419–424 (2011)CrossRefGoogle Scholar
  12. 12.
    L.M. AL-Harbi, E.H. El-Mossalamy, Mod. Appl. Sci. 5, 130–135 (2011)Google Scholar
  13. 13.
    N. Banerjee, Nanotechnol. Sci. Appl. 4, 35–65 (2011)CrossRefGoogle Scholar
  14. 14.
    W. Tang, Q. Wang, X. Zeng, X. Chen, J. Solid State Electrochem. 16, 1429–1445 (2012)CrossRefGoogle Scholar
  15. 15.
    A. Khanna, V.K. Shetty, Sol. Energy 99, 67–76 (2014)CrossRefGoogle Scholar
  16. 16.
    J. Huang, C. Xia, L. Cao, X. Zeng, Mater. Sci. Eng. B 150, 187–193 (2008)CrossRefGoogle Scholar
  17. 17.
    I. Poulios, D. Makri, X. Prohaska, Global NEST 1, 55–62 (1999)Google Scholar
  18. 18.
    R. Carraway, A.J. Hoffman, M.R. Hoffmann, Environ. Sci. Technol. 28, 786–793 (1994)CrossRefGoogle Scholar
  19. 19.
    S.K. Kansal, M. Singh, D. Sud, J. Hazard. Mater. 141, 581–590 (2007)CrossRefGoogle Scholar
  20. 20.
    Freer J. Lizama, J. Baeza, H.D. Mansilla, Catal. Today 76, 235–239 (2002)CrossRefGoogle Scholar
  21. 21.
    S. Shakthivel, B. Neppolian, M.V. Shankar, B. Arabindo, M. Palanichamy, V. Murugesan, Sol. Energy Mater. Sol. Cells 77, 65–82 (2003)CrossRefGoogle Scholar
  22. 22.
    M.A. Habib, I.M.I. Ismail, A.J. Mahmood, M.R. Ullah, J. Saudi. Chem. Soc. 16, 423–429 (2012)CrossRefGoogle Scholar
  23. 23.
    J. Zhou, F. Zhao, F. Wang, Y. Zhang, L. Yang, J. Lumin. 122, 195–197 (2007)CrossRefGoogle Scholar
  24. 24.
    Z.M. Khoshhesab, M. Sarfaraz, M.A. Asadabad, Synth. React. Inorg. Metal Org. Chem. 41, 814–819 (2011)CrossRefGoogle Scholar
  25. 25.
    JCPDS, Powder Diffraction File, Alphabetical Index, Inorganic Compounds (International Centre for Diffraction Data, Newtown Square, PA, 1977)Google Scholar
  26. 26.
    B. Ntsendwana, S. Sampath, B.B. Mamba, O.A. Arotiba, Photochem. Photobiol. Sci. 12, 1091–1102 (2013)CrossRefGoogle Scholar
  27. 27.
    M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Appl. Surf. Sci. 158, 134–140 (2000)CrossRefGoogle Scholar
  28. 28.
    Z.G. Wang, X.T. Zu, S. Zhu, L.M. Wang, Syst. Nanostruct. 35, 199–202 (2006)Google Scholar
  29. 29.
    Y. Show, M.A. Witek, P. Sonthalia, G.M. Swain, Chem. Mater. 15, 871–888 (2003)CrossRefGoogle Scholar
  30. 30.
    M.C. Granger, G.M. Swain, J. Electrochem. Soc. 146, 4551–4558 (1999)CrossRefGoogle Scholar
  31. 31.
    S.A. Kumar, S.M. Chen, Anal. Chim. Acta 592, 36–44 (2007)CrossRefGoogle Scholar
  32. 32.
    S.A. Kumar, H.W. Cheng, S.M. Chen, S.F. Wang, Mater. Sci. Eng. C 30, 86–91 (2010)CrossRefGoogle Scholar
  33. 33.
    F. Zhang, J. Zhao, L. Zang, T. Shen, H. Hidaka, E. Pelizzetti, N. Serpone, J. Mol. Catal. A Chem. 120, 173–178 (1997)CrossRefGoogle Scholar
  34. 34.
    P. Canizares, C. Saez, J. Lobato, M.A. Rodrigo, Electrochim. Acta 49, 4641–4650 (2004)CrossRefGoogle Scholar
  35. 35.
    J.M. Kesselman, O. Weres, N.S. Lewis, M.R. Hoffmann, J. Phys. Chem. B 101, 2637–2643 (1997)CrossRefGoogle Scholar
  36. 36.
    S. Klamklang, H. Vergnes, F. Secocq, K. Pruksathorn, P. Duverneuil, S. Damronglerd, J. Appl. Electrochem. 40, 997–1004 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • B. Ntsendwana
    • 1
  • S. Sampath
    • 1
    • 2
  • B. B. Mamba
    • 1
  • O. S. Oluwafemi
    • 1
    • 3
  • O. A. Arotiba
    • 1
    • 3
  1. 1.Department of Applied ChemistryUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.Department of Inorganic and Physical ChemistryIndian Institute of ScienceBangaloreIndia
  3. 3.Centre for Nanomaterials Science ResearchUniversity of JohannesburgJohannesburgSouth Africa

Personalised recommendations