Skip to main content
Log in

Structural and electrical properties of Bi2La3Ti3FeO15 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The polycrystalline sample of Bi2La3Ti3FeO15was synthesized using a solid-state reaction technique. The formation, basic crystal data and crystalline nature of the compound have been determined by an X-ray diffraction technique at room temperature. Some characteristics (i.e., distribution, size and shape of grains, etc.) of surface microstructure of a pellet (obtained at room temperature using scanning electron microscopy) exhibit the formation of high-density sample. Dielectric and Complex impedance spectroscopy method was used to study electrical characteristics of the material. The material was found to have temperature dependence of electrical relaxation phenomena. Impedance measurements carried out in a wide temperature (30–500 °C) and frequency (1–1000 kHz) ranges have provided many new and interesting results. The ac conductivity studied in the above ranges is found to obey Jonscher’s universal power law. The results of the conduction mechanism of the sample has been analysed in terms of resistive and capacitive components of complex plane formalism and suitable equivalent circuits have been proposed for different regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.S. Kim, T.H. Kim, E.S. Kim, J. Am. Ceram. Soc. 82, 2111 (1999)

    Article  Google Scholar 

  2. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  Google Scholar 

  3. N.A. Spaldin, M. Fiebig, Science 309, 391 (2005)

    Article  Google Scholar 

  4. R.E. Newnham, R.W. Wole, J.F. Dorrian, Mater. Res. Bull. 6, 1029 (1971)

    Article  Google Scholar 

  5. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic Magnetoelectr. Mater. Nat. (London) 442, 759 (2006)

    Google Scholar 

  6. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)

    Article  Google Scholar 

  7. M. Fiebig, J. Phys. D Appl. Phys. 38, 123 (2005)

    Article  Google Scholar 

  8. B. Yu, M. Li, J. Liu, D. Guo, L. Pei, X. Zhao, J. Phys. D Appl. Phys. 41, 065003 (2008)

    Article  Google Scholar 

  9. P.C. Sati, M. Arora, S. Chauhan, S. Chhoker, M. Kumar, J. Appl. Phys. 112, 094102 (2012)

    Article  Google Scholar 

  10. N.K. Verma, G.S. Lotey, J. Nanopart. Res. 14, 742 (2012)

    Article  Google Scholar 

  11. D. Maurya, H. Thota, A. Garg, B. Pandey, H.C. Verma, J. Phys. Condens. Matter 21, 026007 (2009)

    Article  Google Scholar 

  12. S. Zhang, L. Wang, Y. Chen, D. Wang, Y. Yao, Y. Ma, J. Appl. Phys. 111, 074105 (2012)

    Article  Google Scholar 

  13. R.Z. Hou, X.M. Chen, J. Electroceram. 10, 203 (2003)

    Article  Google Scholar 

  14. S.K. Patri, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 19, 1240 (2008)

    Article  Google Scholar 

  15. X.Y. Mao, W. Wang, X.B. Chen, Solid State Commun. 147, 186 (2008)

    Article  Google Scholar 

  16. H.K. Jo, S.S. Kim, D. Do, J. Solgel Sci. Technol. 49, 336 (2009)

    Article  Google Scholar 

  17. A. Mohapatra, P.R. Das, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 25, 1348 (2014)

    Article  Google Scholar 

  18. H. Zhao, H. Kimura, Z. Cheng, M. Osada, J. Wang, X. Wang, S. Dou, Y. Liu, J. Yu, T. Matsumoto, T. Tohei, N. Shibata, Y. Ikuhara, Sci. Rep. 4, 5255 (2014)

    Google Scholar 

  19. X.Q. Chen, X.B. Zeng, F.L. Yang, X.P. Kong, C. Wei, P. Su, Adv. Mater. 668, 762 (2013)

    Article  Google Scholar 

  20. E.W. Powd, An interactive Powder diffraction data interpretation and indexing Program, Ver 2.1, School of Physical Science, Finders University of South Australia, Bedford Park, S.A. 5042, Australia

  21. P.H. Borse, S.S. Yoon, J.S. Jang, J.S. Lee, T.E. Hong, E.D. Jeong, M.S. Won, O.S. Jung, Y.B. Shim, H.G. Kim, Bull. Korean Chem. Soc. 30, 3011 (2009)

    Article  Google Scholar 

  22. M.G. Guaderrama, G.G.C. Arizaga, A. Durán, Ceram. Int. 40, 7459 (2014)

    Article  Google Scholar 

  23. C.H. Hervoches et al., J. Solid Sate Chem. 164, 280 (2002)

    Article  Google Scholar 

  24. H.B. Yang, H. Wang, L. He et al., J. Appl. Phys. 108, 074105 (2010)

    Article  Google Scholar 

  25. J.R. Macdonald, Impedance Spectroscopy (Wiley, New York, 1987)

    Google Scholar 

  26. S. Pattanayak, R.N.P. Choudhary, P.R. Das, J. Mater. Sci. Mater. Electron. 24, 2767 (2013)

    Article  Google Scholar 

  27. K. Lily, K. Kumari, R.N.P. Choudhary, K. Prasad, J. Alloys Compd. 453, 325 (2008)

    Article  Google Scholar 

  28. S. Sen, R.N.P. Choudhary, Mater. Chem. Phys. 87, 256 (2004)

    Article  Google Scholar 

  29. B. Yemu, ZSimpWin, Version 2.00 (Echem Software, AnnArbor, 1999)

  30. M.A.L. Nobre, S.J. Lanfredi, Appl. Phys. 93, 5557 (2003)

    Article  Google Scholar 

  31. V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, J. Am. Ceram. Soc. 55, 492 (1972)

    Article  Google Scholar 

  32. H. Jain, C.H. Hsieh, J. Solids Non Cryst 172, 1408 (1994)

    Article  Google Scholar 

  33. P.S. Das, P.K. Chakraborty, B. Behera, R.N.P. Choudhary, Phys. B 98, 39 (2007)

    Google Scholar 

  34. I.M. Hodge, M.D. Ingram, A.R. West, J. Electroanal. Chem. Interfacial Electrochem. 58, 429 (1975)

    Article  Google Scholar 

  35. P.B. Macedo, C.T. Moynihan, R. Bose, Phys. Chem. Glasses 13, 171 (1972)

    Google Scholar 

  36. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Khatiyar, J. Mater. Sci. 42, 7423 (2007)

    Article  Google Scholar 

  37. J.R. Macdonald, Solid State Ionics 13, 147 (1984)

    Article  Google Scholar 

  38. S.K. Patri, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 19, 1240 (2008)

    Article  Google Scholar 

  39. S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Appl. Phys. A 112, 387 (2013)

    Article  Google Scholar 

  40. M.A.L. Nobre, S. Lanfredi, J. Appl. Phys. 93, 5557 (2003)

    Article  Google Scholar 

  41. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, J. Appl. Phys. 106, 024102 (2009)

    Article  Google Scholar 

  42. A.K. Jonscher, Nature 267, 673 (1977)

    Article  Google Scholar 

  43. C.K. Suman, K. Prasad, R.N.P. Choudhary, J. Mater. Sci. 41, 369 (2006)

    Article  Google Scholar 

  44. K. Funke, Solid State Chem. 22, 111 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aparajita Mohapatra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohapatra, A., Das, P.R. & Choudhary, R.N.P. Structural and electrical properties of Bi2La3Ti3FeO15 ceramics. J Mater Sci: Mater Electron 27, 436–443 (2016). https://doi.org/10.1007/s10854-015-3771-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3771-z

Keywords

Navigation