Preparation and characterization of BaSnO3 nanostructures via a new simple surfactant-free route

  • Saeed Moshtaghi
  • Sahar Zinatloo-Ajabshir
  • Masoud Salavati-Niasari


Pure barium stannate (BaSnO3) nanostructures were prepared via a new facile surfactant-free coprecipitation-calcination route by employing Ba(Sal)2 (Sal = salicylidene) and SnCl2·2H2O as precursors. Ba(Sal)2 was employed as precursor to synthesize BaSnO3 nanostructures for the first time. The as-obtained BaSnO3 nanostructures were analyzed by UV–vis diffuse reflectance spectroscopy, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, energy dispersive X-ray microanalysis, transmission electron microscopy, and X-ray diffraction. Based on the morphological investigations of the as-prepared samples, it was found that the particle size and shape of the BaSnO3 depended on the reaction temperature, precipitator and surfactant. BaSnO3 nanostructures with various shapes and particle sizes were successfully prepared. Furthermore, the photocatalytic properties of as-synthesized BaSnO3 were evaluated by degradation of eriochrome black T (anionic dye) as water contaminant.


SnCl2 Field Emission Scanning Electron Microscope Image Tepa Salicylidene Energy Dispersive Spectrometry Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to University of Kashan for supporting this work by Grant No. 159271/20.


  1. 1.
    M. Sabet, M. Salavati-Niasari, Omid Amiri. Electrochim. Acta 117, 504 (2014)CrossRefGoogle Scholar
  2. 2.
    S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Ceram. Int. 41, 9593 (2015)CrossRefGoogle Scholar
  3. 3.
    S. Zinatloo-Ajabshir, M. Salavati-Niasari, Int. J. Appl. Ceram. Technol. 11, 654 (2014)CrossRefGoogle Scholar
  4. 4.
    F. Beshkar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 26, 5043 (2015)Google Scholar
  5. 5.
    S. Zinatloo-Ajabshir, M. Salavati-Niasari, New J. Chem. 39, 3948 (2015)CrossRefGoogle Scholar
  6. 6.
    V.G. Wagner, H. Binder, Z. Anorg. Allg. Chem. 298, 12 (1959)CrossRefGoogle Scholar
  7. 7.
    Z. Zhigang, Z. Gang, Ferroelectrics 101, 43 (1990)CrossRefGoogle Scholar
  8. 8.
    P.H. Borse, J.S. Lee, H.G. Kim, J. Appl. Phys. 100, 124915 (2006)CrossRefGoogle Scholar
  9. 9.
    W. Wang, Sh Liang, K. Ding, J. Bi, J.C. Yu, P. Keung, L. Wong, J. Wu, J. Mater. Sci. 49, 1893 (2014)CrossRefGoogle Scholar
  10. 10.
    S.S. Shin, J.S. Kim, J.H. Suk, K.D. Lee, D.W. Kim, J.H. Park, I.S. Cho, K.S. Hong, J.Y. Kim, ACS Nano 7, 1027 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Cerda, J. Arbiol, G. Dezanneau, R. Díaz, J.R. Morante, Sensors Actuators B 84, 21 (2002)CrossRefGoogle Scholar
  12. 12.
    T. Huang, T. Nakamura, M. Itoh, Y. Inaguma, O. Ishiyama, J. Mater. Sci. 30, 1556 (1995)CrossRefGoogle Scholar
  13. 13.
    W. Zhang, J. Tang, J. Ye, J. Mater. Res. 22, 1859 (2007)CrossRefGoogle Scholar
  14. 14.
    H. Mizoguchi, H.W. Eng, P.M. Woodward, Inorg. Chem. 43, 1667 (2004)CrossRefGoogle Scholar
  15. 15.
    V. Vorgelegt, L. Wensheng, Synthesis of nanosized BaSnO3 powders. Doctoral thesis in Engineering of Natural Sciences, Faculty of Engineering, University of Saarlandes, Saarbrücken—Germany, 2002, pp. 1–2Google Scholar
  16. 16.
    S. Upadhyay, O. Parkash, D. Kumar, Mater. Lett. 49, 251 (2001)CrossRefGoogle Scholar
  17. 17.
    A.S. Deep, S. Vidya, P.C. Manu, S. Solomon, A. John, J.K. Thomas, J. Alloys Compd. 509, 1830 (2011)CrossRefGoogle Scholar
  18. 18.
    W. Lu, H. Schmidt, J. Sol-Gel. Sci. Technol. 42, 55 (2007)CrossRefGoogle Scholar
  19. 19.
    J. Ahmed, C.K. Blakely, S.R. Bruno, V.V. Poltavets, Mater. Res. Bull. 47, 2282 (2012)CrossRefGoogle Scholar
  20. 20.
    Y.H.O. Muñoz, M. Ponce, J. E. R. Páez Powder Technol. 279, 86 (2015)CrossRefGoogle Scholar
  21. 21.
    F. Beshkar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Chem. Eng. J. (2015). doi: 10.1016/j.cej.2015.05.076 Google Scholar
  22. 22.
    S. Zinatloo-Ajabshir, M. Salavati-Niasari, M. Hamadanian, RSC Adv. 5, 33792 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Mortazavi-Derazkola, S. Zinatloo-Ajabshir, M. Salavati-Niasari, RSC Adv. 5, 56666 (2015)CrossRefGoogle Scholar
  24. 24.
    M. Shakouri-Arania, M. Salavati-Niasari, New J. Chem. 38, 1179 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Ghaed-Amini, M. Bazarganipour, M. Salavati-Niasari, J. Ind. Eng. Chem. 21, 1089 (2015)CrossRefGoogle Scholar
  26. 26.
    G. Pfaff, V.D. Hildenbrand, H. Fuess, J. Mater. Sci. Lett. 17, 1983 (1998)CrossRefGoogle Scholar
  27. 27.
    S. Taoa, F. Gao, X. Liu, O. Toft Sùrensen. Sensors Actuators B 71, 223 (2000)CrossRefGoogle Scholar
  28. 28.
    B. Andriyevsky, A. Patryn, K. Dorywalski, Ch. Cobet, M. Piasecki, I. Kityk, N. Esser, T. Łukasiewicz, J. Dec, Ferroelectrics 426, 194 (2012)CrossRefGoogle Scholar
  29. 29.
    J. Zhong, J. Li, F. Feng, Y. Lu, J. Zeng, W. Hu, Z. Tang, J. Mol. Catal. A: Chem. 357, 101 (2012)CrossRefGoogle Scholar
  30. 30.
    D. Ghanbari, M. Salavati-Niasari, S. Karimzadeh, S. Gholamrezaei, J. NanoStruct. 4, 227 (2014)Google Scholar
  31. 31.
    G. Nabiyouni, S. Sharifi, D. Ghanbari, M. Salavati-Niasari, J. NanoStruct. 4, 317 (2014)Google Scholar
  32. 32.
    M. Panahi-Kalamuei, M. Mousavi-Kamazani, M. Salavati-Niasari, J. NanoStruct. 4, 459 (2014)Google Scholar
  33. 33.
    F. Beshkar, M. Salavati-Niasari, J. NanoStruct. 5, 17 (2015)CrossRefGoogle Scholar
  34. 34.
    M. Goudarzi, D. Ghanbari, M. Salavati-Niasari, J. NanoStruct. 5, 110 (2015)Google Scholar
  35. 35.
    S. Moshtaghi, M. Salavati-Niasari, D. Ghanbari, J. NanoStruct. 5, 169 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Saeed Moshtaghi
    • 1
  • Sahar Zinatloo-Ajabshir
    • 1
  • Masoud Salavati-Niasari
    • 1
  1. 1.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanI. R. Iran

Personalised recommendations