Optimized synthesis of ZnSe nanocrystals by hydrothermal method



Zinc selenide (ZnSe) nanocrystals were prepared via a facile hydrothermal method in the presence of different surfactants from the solution of zinc salt, SeCl4 and hydrazine. In this process, hydrazine was used as reductant. The size, morphology, chemical composition and purity of the nanocrystals depend on the type of surfactant, zinc source, reaction temperature and time. ZnSe nanospheres are synthesized at 180 °C for 18 h in the presence of cetyltrimethylammonium bromide (CTAB) and polyethylene glycol, whereas in the presence of sodium dodecyl sulfate and sodium dodecylbenzenesulfonate, the coalesced particles and bulk structures are formed. In the presence of CTAB at 180 °C, spherical assemblies of nanoparticles are formed after 6 h. With increasing the time to 12 h, the samples are found to be a mixture of nanospheres and nanorods. With longing the reaction time up to 24 h, nanorods disappear while there are still nanospheres. The pure ZnSe nanospheres are obtained at high temperatures (220 °C) and also when using from zinc nitrate.


Surfactant Sodium Dodecyl Sulfate CTAB ZnSe Zinc Nitrate 



Authors are grateful to the council of University of Kashan for providing financial support to undertake this work by Grant No. (159271/488).


  1. 1.
    S. Arya, S. Khan, P. Lehana, I. Gupta, S. Kumar, Electrical properties of electrodeposited zinc selenide (ZnSe) nanowires. J. Mater. Sci. Mater. Electron. 25, 4150 (2014)CrossRefGoogle Scholar
  2. 2.
    J. Li, Z. Chen, R.J. Wang, D.M. Proserpio, Low temperature route towards new materials: solvothermal synthesis of metal chalcogenides in ethylenediamine. Coord. Chem. Rev. 190–192, 707 (1999)CrossRefGoogle Scholar
  3. 3.
    N.S. Filippov, N.V. Vandysheva, M.A. Parashchenko, S.S. Kosolobov, O.I. Semenova, R.O. Anarbaev, D.V. Pyshnyi, I.A. Pyshnaya, S.I. Romanov, Electrophoretic deposition of CdS colloidal nanoparticles onto an amorphous silicon membrane. Semiconductors 48, 967 (2014)CrossRefGoogle Scholar
  4. 4.
    S.H. Deulkar, C.H. Bhosale, M. Sharon, M. Neumann-Spallart, Preparation of non-stoichiometric (Zn, Fe)S chalcogenides and evaluation of their thermal, optical and electrical properties. J. Phys. Chem. Solids 64, 539 (2003)CrossRefGoogle Scholar
  5. 5.
    W.C.W. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016 (1998)CrossRefGoogle Scholar
  6. 6.
    A. Sobhani, M. Salavati-Niasari, Morphological control of MnSe2/Se nanocomposites by amount of hydrazine through a hydrothermal process. Mater. Res. Bull. 48, 3204 (2013)CrossRefGoogle Scholar
  7. 7.
    A. Sobhani, M. Salavati-Niasari, Synthesis and characterization of a nickel selenide series via a hydrothermal process. Superlattices Microstruct. 65, 79 (2014)CrossRefGoogle Scholar
  8. 8.
    A. Sobhani, M. Salavati-Niasari, Synthesis and characterization of CdSe nanosturctures by using a new selenium source: effect of hydrothermal preparation conditions. Mater. Res. Bull. 53, 7 (2014)CrossRefGoogle Scholar
  9. 9.
    A. Sobhani, M. Salavati-Niasari, A new simple route for the preparation of nanosized copper selenides under different conditions. Ceram. Int. 40, 8173 (2014)CrossRefGoogle Scholar
  10. 10.
    A. Sobhani, M. Salavati-Niasari, Hydrothermal synthesis, characterization, and magnetic properties of cubic MnSe2/Se nanocomposites material. J. Alloys Compd. 617, 93 (2014)CrossRefGoogle Scholar
  11. 11.
    M. Esmaeili-Zare, M. Salavati-Niasari, A. Sobhani, Simple sonochemical synthesis and characterization of HgSe nanoparticles. Ultrason. Sonochem. 19, 1079 (2012)CrossRefGoogle Scholar
  12. 12.
    L. Chen, D. Zhang, G. Zhai, J. Zhang, Comparative study of ZnSe thin films deposited from modified chemical bath solutions with ammonia-containing and ammonia-free precursors. Mater. Chem. Phys. 120, 456 (2010)CrossRefGoogle Scholar
  13. 13.
    M. Molaei, A.R. Khezripour, M. Karimipour, Synthesis of ZnSe nanocrystals (NCs) using a rapid microwave irradiation method and investigation of the effect of copper (Cu) doping on the optical properties. Appl. Surf. Sci. 317, 236 (2014)CrossRefGoogle Scholar
  14. 14.
    X. Ren, Q. Li, Y. Xue, X. Zhai, M. Yu, Solvothermal synthesis of well-dispersed ZnSe microspheres. J. Colloid Interface Sci. 389, 53 (2013)CrossRefGoogle Scholar
  15. 15.
    J.D. Patel, F. Mighri, A. Ajji, A facile route towards the preparation of ZnSe nanocrystals. Mater. Lett. 131, 366 (2014)CrossRefGoogle Scholar
  16. 16.
    S.K. Hong, E. Kurts, J.H. Chang, T. Hanada, M. Oku, T. Yao, Low stacking-fault density in ZnSe epilayers directly grown on epi-ready GaAs substrates without GaAs buffer layers. Appl. Phys. Lett. 78, 165 (2001)CrossRefGoogle Scholar
  17. 17.
    H. Jeon, J. Ding, W. Patterson, A.V. Nurmikko, W. Xie, D.C. Grillo, M. Kobayashi, R.L. Gunshor, Blue-green injection laser diodes in (Zn, Cd)Se/ZnSe quantum wells. Appl. Phys. Lett. 59, 3619 (1991)CrossRefGoogle Scholar
  18. 18.
    S.T. Lakshmikumar, A.C. Rastogi, Novel 2-stage selenization process for the preparation of ZnSe films. Thin Solid Films 259, 150 (1995)CrossRefGoogle Scholar
  19. 19.
    C.D. Lokhande, P.S. Patil, H. Tributsch, A. Ennaoni, ZnSe thin films by chemical bath deposition method. Sol. Energy Mater. Sol. Cells 55, 379 (1998)CrossRefGoogle Scholar
  20. 20.
    Z.M. Zhu, N.Z. Liu, G.H. Li, H.X. Han, Z.P. Wang, S.Z. Wang, L. He, R.B. Ji, Y. Wu, Photoluminescence properties of nitrogen-doped ZnSe epilayers. Infrared Millim. Waves 85, 13 (1999)Google Scholar
  21. 21.
    R. Rujkorakarmn, A.J. Nelson, Optical properties of ZnS1−xSex alloys fabricated by plasmainduced isoelectronic substitution. J. Appl. Phys. 87, 8557 (2000)CrossRefGoogle Scholar
  22. 22.
    Z. Mierczyk, A. Majchrowski, K. Oźga, A. Slezak, I.V. Kityk, Simulation of nonlinear optical absorption in ZnSe:Co2+ crystals. Opt. Laser Technol. 38, 558 (2006)CrossRefGoogle Scholar
  23. 23.
    Z. Mierczyk, A. Majchrowski, I.V. Kityk, W. Gruhn, ZnSe:Co2+—nonlinear optical absorber for giant-pulse eye-safe lasers. Opt. Laser Technol. 35, 169 (2003)CrossRefGoogle Scholar
  24. 24.
    H. Qian, X. Qiu, L. Li, J. Ren, Microwave-assisted aqueous synthesis: a rapid approach to prepare highly luminescent ZnSe(S) alloyed quantum dots. J. Phys. Chem. B 110, 9034 (2006)CrossRefGoogle Scholar
  25. 25.
    L. Huang, H. Han, One-step synthesis of water-soluble ZnSe quantum dots via microwave irradiation. Mater. Lett. 64, 1099 (2010)CrossRefGoogle Scholar
  26. 26.
    A. Colli, S. Hofmann, A.C. Ferrari, C. Ducati, F. Martelli, S. Rubini, S. Cabrini, A. Franciosi, J. Robertson, Low-temperature synthesis of ZnSe nanowires and nanosaws by catalyst- assisted molecular-beam epitaxy. Appl. Phys. Lett. 86, 153101 (2005)CrossRefGoogle Scholar
  27. 27.
    Y.G. Wang, B.S. Zhou, T.H. Wang, N. Wang, Y. Cai, Y.F. Chan, S.X. Zhou, I–V characteristics of Schottky contacts of semiconducting ZnSe nanowires and gold electrodes. Nanotechnology 17, 2420 (2006)CrossRefGoogle Scholar
  28. 28.
    T. Forest, F.T. Quinlan, J. Kuther, W. Tremel, W. Knoll, S. Risbud, P. Stroeve, Reverse micelle synthesis and characterization of ZnSe nanoparticles. Langmuir 16, 4049 (2000)CrossRefGoogle Scholar
  29. 29.
    Z.D. Hu, X.F. Duan, M. Gao, Q. Chen, L.M. Peng, ZnSe nanobelts and nanowires synthesized by a closed space vapor transport technique. J. Phys. Chem. C 111, 2987 (2007)CrossRefGoogle Scholar
  30. 30.
    M.C.H. Liao, Y.H. Chang, Y.F. Chen, J.W. Hsu, J.M. Lin, W.C. Chou, Fabrication of ZnSe quantum dots under Volmer–Weber mode by metalorganic chemical vapor deposition. Appl. Phys. Lett. 70, 2256 (1997)CrossRefGoogle Scholar
  31. 31.
    X.F. Duan, C.M. Lieber, General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298 (2000)CrossRefGoogle Scholar
  32. 32.
    Y.D. Li, Y. Ding, Y.T. Qian, Y. Zhang, L. Yang, A solvothermal elemental reaction to produce nanocrystalline ZnSe. Inorg. Chem. 37, 2844 (1998)CrossRefGoogle Scholar
  33. 33.
    Z.X. Deng, C. Wang, X.M. Sun, Y.D. Li, Structure-directing coordination template effect of ethylenediamine in formations of ZnS and ZnSe nanocrystallites via solvothermal route. Inorg. Chem. 41, 869 (2002)CrossRefGoogle Scholar
  34. 34.
    Y. Jiang, X.M. Meng, W.C. Yiu, J. Liu, J.X. Ding, C.S. Lee, S.T. Lee, Zinc selenide nanoribbons and nanowires. J. Phys. Chem. B 108, 2784 (2004)CrossRefGoogle Scholar
  35. 35.
    M.A. Malik, N. Revaprasadu, P. O’Brien, Air-stable single-source precursors for the synthesis of chalcogenide semiconductor nanoparticles. Chem. Mater. 13, 913 (2001)CrossRefGoogle Scholar
  36. 36.
    R. Solanki, J. Huo, J.L. Freeouf, B. Miner, Atomic layer deposition of ZnSe/CdSe superlattice nanowires. Appl. Phys. Lett. 81, 3864 (2002)CrossRefGoogle Scholar
  37. 37.
    E.D. Bourret-Courchesne, Incorporation of hydrogen in nitrogen and arsenic doped ZnSe epitaxial layers grown by organometallic vapor phase epitaxy. Appl. Phys. Lett. 68, 2418 (1996)CrossRefGoogle Scholar
  38. 38.
    G. Henshaw, I.P. Parkin, G.A. Shaw, Convenient, room-temperature liquid ammonia routes to metal chalcogenides. J. Chem. Soc. Dalton Trans. 231 (1997). doi: 10.1039/A605665B
  39. 39.
    A. Sobhani, F. Davar, M. Salavati-Niasari, Synthesis and characterization of hexagonal nano-sized nickel selenide by simple hydrothermal method assisted by CTAB. Appl. Surf. Sci. 257, 7982 (2011)CrossRefGoogle Scholar
  40. 40.
    H. Emadi, M. Salavati-Niasari, F. Davar, Synthesis and characterisation of silver sulphide nanoparticles by ultrasonic method. Micro Nano Lett. 6, 909 (2011)CrossRefGoogle Scholar
  41. 41.
    D. Ghanbari, M. Salavati-Niasari, S. Karimzadeh, S. Gholamrezaei, J. NanoStruct. 4, 227 (2014)Google Scholar
  42. 42.
    G. Nabiyouni, S. Sharifi, D. Ghanbari, M. Salavati-Niasari, J. NanoStruct. 4, 317 (2014)Google Scholar
  43. 43.
    M. Panahi-Kalamuei, M. Mousavi-Kamazani, M. Salavati-Niasari, Jo. NanoStruct. 4, 459 (2014)Google Scholar
  44. 44.
    F. Beshkar, M. Salavati-Niasari, J. NanoStruct. 5, 17 (2015)CrossRefGoogle Scholar
  45. 45.
    L. Nejati-Moghadam, A. Esmaeili Bafghi-Karimabad, M. Salavati-Niasari, H. Safardoust, J. NanoStruct. 5, 47 (2015)Google Scholar
  46. 46.
    Q. Pen, Y. Dong, Y. Li, ZnSe semiconductor hollow microspheres. Angew. Chem. Int. Ed. 42, 3027 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of ChemistryKosar University of BojnordBojnordIslamic Republic of Iran
  2. 2.Institute of Nano Science and Nano TechnologyUniversity of KashanKashanIslamic Republic of Iran

Personalised recommendations