Effects of Bi addition on interfacial reactions and mechanical properties of In–3Ag–xBi/Cu solder joints

  • Yunzhu Ma
  • Huiting Luo
  • Wensheng Liu
  • Yufeng Huang
  • Qiang Yu
  • Yongjun Li


In this study, the effects of Bi addition on the interfacial reactions and mechanical properties of In–3Ag–xBi/Cu joints were investigated. Better wettability was obtained with increased addition of Bi (0–2 wt%), but further additions up to 3 wt% decreased the beneficial effects. The intermetallic compounds (IMCs) formed at In–3Ag–xBi/Cu interfaces were (Ag,Cu)In2 in all cases. With the increase of Bi addition, the interfacial IMC grains coarsened and the IMC layers got thicker. The EPMA mapping revealed that Bi addition reacted with neither In or Ag to form intermetallics, it dissolved as solid solution in Indium matrix uniformly. In addition, the shear strength of the soldered joints were improved by Bi addition, with the peak shear strength occurring at 2 wt% Bi addition. The fracture mode also changed from typical ductile fracture mode to mixed ductile–brittle fracture mode with increased amount of Bi addition.


Shear Strength Solder Joint Interfacial Reaction Solder Alloy Composite Solder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author thanks the National Natural Science Foundation of China (No. 50774098) and Creative research group of National Natural Science Foundation of China (Grant No. 50721003) for the financial support.


  1. 1.
    T.H. Chuang, C.C. Jain, S.S. Wang, J. Mater. Eng. Perform. 18, 1133 (2009)CrossRefGoogle Scholar
  2. 2.
    H.L. Reynolds, S.H. Kang, J.W. Morris, J. Electron. Mater. 28, 69 (1999)CrossRefGoogle Scholar
  3. 3.
    T. Hisada, I. Shohji, Y. Yamada, K. Toriyama, M. Ueno, in IEEE CPMT Symposium Japan (ICSJ), 2013, vol. 3, p. 1 (2013)Google Scholar
  4. 4.
    J. Glazer, Int. Mater. Rev. 40, 65 (1995)CrossRefGoogle Scholar
  5. 5.
    K. Shimizu, T. Nakanishi, K. Karasawa, K. Hashimoto, K. Niwa, J. Electron. Mater. 24, 39 (1995)CrossRefGoogle Scholar
  6. 6.
    W.W. So, C.C. Lee, IEEE Trans. Compon. Packaging Technol. 23, 377–382 (2000)CrossRefGoogle Scholar
  7. 7.
    H. Qi, M. Osterman, M. Pecht, IEEE Trans. Compon. Packaging Technol. 30, 242–247 (2007)CrossRefGoogle Scholar
  8. 8.
    J. Shen, S.Q. Lai, Y.C. Liu, H.X. Gao, J. Wei, J. Mater. Sci.: Mater. Electron. 19(3), 275–280 (2008)Google Scholar
  9. 9.
    C.M.L. Wu, Y.W. Wong, J. Mater. Sci.: Mater. Electron. 18(1–3), 77–91 (2007)Google Scholar
  10. 10.
    N. Zhao, M.L. Huang, H.T. Ma, F. Yang, Z.J. Zhang, Met. Mater. Int. 20, 953 (2014)CrossRefGoogle Scholar
  11. 11.
    L. Gao, S. Xue, L. Zhang, Z. Sheng, F. Ji, W. Dai, S. Yu, G. Zeng, Microelectron. Eng. 87, 2025 (2010)CrossRefGoogle Scholar
  12. 12.
    J. Zhou, Y.S. Sun, F. Xue, J. Alloys Compd. 397, 260–264 (2005)CrossRefGoogle Scholar
  13. 13.
    J. Zhao, L. Qi, X. Wang, L. Wang, J. Alloys Compd. 375, 196–201 (2004)CrossRefGoogle Scholar
  14. 14.
    J. Chen, J. Shen, D. Min, C.F. Peng, J. Mater. Sci.: Mater. Electron. 20(11), 1112–1117 (2009)Google Scholar
  15. 15.
    H.M. Chen, C.J. Guo, J.P. Huang, H. Wang, J. Mater. Sci.: Mater. Electron. 26, 5459–5464 (2015)Google Scholar
  16. 16.
    N. Zhao, M.L. Huang, Y. Zhong, H.T. Ma, X.M. Pan, J. Mater. Sci.: Mater. Electron. 26, 345–352 (2015)Google Scholar
  17. 17.
    J.M. Song, T.S. Lui, Y.L. Chang, L.H. Chen, J. Alloys Compd. 403, 191–196 (2005)CrossRefGoogle Scholar
  18. 18.
    W.X. Dong, Y.W. Shi, Z.D. Xia, Y.P. Lei, Y.F. Guo, J. Electron. Mater. 37, 982 (2008)CrossRefGoogle Scholar
  19. 19.
    T. Iwasaki, J.H. Kim, S. Mizuhashi, M. Satah, J. Electron. Mater. 34, 647–654 (2005)CrossRefGoogle Scholar
  20. 20.
    H. Fallahi, M.S. Nurulakmal, A.F. Arezodar, J. Mater. Sci.: Mater. Electron. 23, 1739 (2012)Google Scholar
  21. 21.
    J. Zhao, C.Q. Cheng, L. Qi, C.Y. Chi, J. Alloys. Compd. 473, 382–388 (2009)CrossRefGoogle Scholar
  22. 22.
    K. Suganuma, K.S. Kim, J. Mater. Sci.: Mater. Electron. 18, 121–127 (2007)Google Scholar
  23. 23.
    L.F. Li, Y.K. Cheng, G.L. Xu, E.Z. Wang, Z.H. Zhang, H. Wang, Mater. Des. 64, 15–20 (2014)CrossRefGoogle Scholar
  24. 24.
    A.A. El-Daly, Y. Swilem, M.H. Markled, M.G. El-Shaarawy, A.M. Abdraboh, J. Alloys Compd. 484, 134–142 (2009)CrossRefGoogle Scholar
  25. 25.
    M.L. Huang, L. Wang, Metall. Mater. Trans. A 36, 1439–1446 (2005)CrossRefGoogle Scholar
  26. 26.
    Z. Moser, W. Gasior, J. Pstrus, W. Zakulski, I. Ohnuma, X.J. Liu, Y. Inohana, K. Ishida, J. Electron. Mater. 30, 1120 (2001)CrossRefGoogle Scholar
  27. 27.
    H.S. Liu, Y. Cui, X.J. Liu, C.P. Wang, I. Ohnuma, R. Kainuma, Z.P. Jin, K. Ishida, J. Phase Equilib. Diffus. 23, 409 (2002)CrossRefGoogle Scholar
  28. 28.
    W.X. Chen, S.B. Xue, H. Wang, Y.H. Hu, J.X. Wang, J. Mater. Sci.: Mater. Electron. 21, 719–725 (2010)Google Scholar
  29. 29.
    L. Yang, J.G. Ge, Y.C. Zhang, J. Dai, Y.F. Jing, J. Mater. Sci.: Mater. Electron. 26, 613–619 (2015)Google Scholar
  30. 30.
    L. Yang, J. Mater. Sci.: Mater. Electron. 24, 1405–1409 (2013)Google Scholar
  31. 31.
    Satyanarayan, K.N. Prabhu, Adv. Colloid Interface Sci. 166, 87 (2011)CrossRefGoogle Scholar
  32. 32.
    S. Chantaramanee, S. Wisutmethangoon, L. Sikong, T. Plookphol, J. Mater. Sci.: Mater. Electron. 24, 3707–3715 (2013)Google Scholar
  33. 33.
    X. Chen, F. Xue, J. Zhou, Y. Yao, J. Alloys Compd. 633, 377–383 (2015)CrossRefGoogle Scholar
  34. 34.
    P. Pavel, T. Anne, T. Vladimir, E. Nicolas, Scr. Mater. 45, 1439–1445 (2001)CrossRefGoogle Scholar
  35. 35.
    C. Zhang, S.D. Liu, G.T. Qian, J. Zhou, F. Xue, Trans. Nonferrous Metals Soc. China 24(1), 184–191 (2014)CrossRefGoogle Scholar
  36. 36.
    J.J. Sundelin, S.T. Nurmi, T.K. Lepisto, E.O. Ristolainen, Mater. Sci. Eng. A 420, 55 (2006)CrossRefGoogle Scholar
  37. 37.
    M.L. Huang, Q. Zhou, N. Zhao, L.D. Chen, J. Mater. Sci.: Mater. Electron. 24, 2624–2629 (2013)Google Scholar
  38. 38.
    Y.H. Lee, H.T. Lee, Mater. Sci. Eng. A 444, 75 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yunzhu Ma
    • 1
  • Huiting Luo
    • 1
  • Wensheng Liu
    • 1
  • Yufeng Huang
    • 1
  • Qiang Yu
    • 1
  • Yongjun Li
    • 1
  1. 1.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations