Hydrothermal synthesis and luminescence of SrAl2O4:Eu2+/Yb3+ hierarchical nanostructures

  • Kai Song
  • Jin-Gang Mo
  • Wei Chen
  • Kai Feng


SrAl2O4:Eu2+/Yb3+ powders were synthesized through the hydrothermal process. The phase and morphology of powders were characterized by XRD and SEM. The corresponding luminescence was recorded by the spectrophotometer. The XRD results indicated that the obtained SrAl2O4:Eu2+/Yb3+ samples have the monoclinic phase. The SEM images showed that the obtained SrAl2O4:Eu2+/Yb3+ samples are microspheres with hierarchical structure. Under the excitation at 360 nm, the SrAl2O4:Eu2+/Yb3+ powders showed emission bands in visible and near infrared regions. The Yb3+ concentration has obvious influence on the emission intensities of SrAl2O4:Eu2+/Yb3+ powders. The results showed that Eu2+ ion is an efficient sensitizer for Yb2+ ion in SrAl2O4 host lattice.


Monoclinic Phase Energy Transfer Process SrAl2O4 Yb2O3 Charge Transfer State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the National Natural Science Foundation of China (11204021) and Natural Science Foundation of Jilin Province (20130522008JH).


  1. 1.
    D. Si, B. Geng, S. Wang, CrystEnngComm 12, 2722 (2010)CrossRefGoogle Scholar
  2. 2.
    D.S. Kshatri, A. Khare, J. Alloys Compd. 588, 488 (2014)CrossRefGoogle Scholar
  3. 3.
    H. Zhang, Z. Xue, B. Lei, H. Dong, H. Zhang, S. Deng, M. Zheng, Y. Liu, Y. Xiao, Opt. Mater. 36, 1802 (2014)CrossRefGoogle Scholar
  4. 4.
    W. Zhang, F. Liu, S. Feng, S. Hao, Y. Xu, J. Guan, J. Mater. Sci.: Mater. Electron. 25, 2355 (2014)Google Scholar
  5. 5.
    A. Yu, D. Zhang, Y. Hu, R. Yang, J. Mater. Sci.: Mater. Electron. 25, 4434 (2014)Google Scholar
  6. 6.
    D. Dutczak, T. Jüstel, C. Ronda, A. Meijerink, Phys. Chem. Chem. Phys. 17, 15236 (2015)CrossRefGoogle Scholar
  7. 7.
    S.Y. Kaya, E. Karacaoglu, B. Karasu, Ceram. Int. 38, 3701 (2012)CrossRefGoogle Scholar
  8. 8.
    S.J. Kim, H.I. Wona, N. Hayk, C.W. Won, D.Y. Jeon, A.G. Kirakosyan, Mater. Sci. Eng. B 176, 1521 (2011)CrossRefGoogle Scholar
  9. 9.
    S.K. Kandpal, B. Goundie, J. Weight, R.A. Pollock, M.D. Mason, R.W. Meulenberg, A.C.S. Appl, Mater. Interf. 3, 3482 (2011)CrossRefGoogle Scholar
  10. 10.
    E. Shafia, M. Bodaghi, S. Esposito, A. Aghaei, Ceram. Int. 40, 4697 (2014)CrossRefGoogle Scholar
  11. 11.
    J.J. Zhou, Y.X. Zhuang, S. Ye, T. Teng, G. Lin, B. Zhu, J.H. Xie, J.R. Qiu, Appl. Phys. Lett. 95, 141101 (2009)CrossRefGoogle Scholar
  12. 12.
    H. Lin, D.Q. Chen, Y.L. Yu, Z.F. Shan, P. Huang, A.P. Yang, Y.S. Wang, J. Alloys Compd. 509, 3363 (2011)CrossRefGoogle Scholar
  13. 13.
    C. Burda, X.B. Chen, R. Narayanan, M.A. EI-Sayed, Chem. Rev. 105, 1025 (2005)CrossRefGoogle Scholar
  14. 14.
    Y.N. Xia, P.D. Yang, Y.G. Sun, Y.Y. Wu, B. Mayers, B. Guates, Y.D. Yin, F. Kim, H.Q. Yan, Adv. Mater. 15, 353 (2003)CrossRefGoogle Scholar
  15. 15.
    A.M. Kaczmarek, R.V. Deun, Chem. Soc. Rev. 42, 8835 (2013)CrossRefGoogle Scholar
  16. 16.
    A.K. Mondal, D.W. Su, S.Q. Chen, J.Q. Zhang, A. Ung, G.X. Wang, Chem. Phys. Lett. 610–611, 115 (2014)CrossRefGoogle Scholar
  17. 17.
    G. Sun, F.X. Qi, S.S. Zhang, Y.W. Li, Y. Wang, J.L. Cao, H. Bala, X.D. Wang, T. Jia, Z.Y. Zhang, J. Alloys Compd. 617, 192 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Zhou, X.J. Zhang, Z.Y. Zhao, Q. Zhang, F. Wang, Y.H. Lin, Superlattice Microst. 72, 238 (2014)CrossRefGoogle Scholar
  19. 19.
    Y. Zhou, Y.T. Wang, Q. Yi, M.Y. Li, X.Z. Li, P. Deng, Y. Huang, J. Mater. Sci.: Mater. Electron. 25, 4156 (2014)Google Scholar
  20. 20.
    Y. Zhou, X.-H. He, B. Yan, Opt. Mater. 36, 602 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Tai, G. Zheng, H. Wang, J. Bai, J. Solid State Chem. 226, 250 (2015)CrossRefGoogle Scholar
  22. 22.
    S. Shionoya, W.M. Yen, Phosphor Handbook, 2nd edn. (CRC, New York, 1999), pp. 568–570Google Scholar
  23. 23.
    Y. Yang, B. Liu, Y. Zhang, X. Lv, L. Wei, X. Wang, J. Mater. Sci.: Mater. Electron. (2015). doi: 10.1007/s10854-015-3490-5 Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Life ScienceChangchun Normal UniversityChangchunChina
  2. 2.Traditional Chinese Medicine Biotechnology Innovation Center in Jilin Province, College of Chemistry and BiologyBeihua UniversityJilinChina

Personalised recommendations