Structural and magnetic studies on Fe doped zinc oxide, Zn1−x Fe x O synthesized by solid state reaction

  • T. Akilan
  • N. Srinivasan
  • R. Saravanan


High purity Fe2O3 doped ZnO composites were grown by standard solid state reaction method in air at temperature range of 1350 °C for 10 h. The structures of the grown samples were investigated by X-ray diffraction studies. Single phase ZnO was observed indicating substitutional addition Fe2+ ion in Zn lattice. Electron density studies were carried out and sharing of the electrons between the atoms were observed in different planes and directions. Room temperature ferromagnetism can be observed in Fe-doped ZnO using vibrating sample magnetometry showing an increasing trend as the dopant concentration increases. Scanning electron microscopy micrographs along with energy dispersive X-ray analysis were taken to study of structure of the grown composites and to find the presence of Fe in ZnO.


Maximum Entropy Method Room Temperature Ferromagnetism Electronic Charge Density Vibrate Sample Magnetometry Standard Solid State Reaction Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge University grant commission (UGC Ref No. 39-497/2010(SR)) for sanctioning the Major Research Project. The authors thank the management of Thiagarajar College, Madurai—625 009, India and the management of The Madura College, Madurai—625011, India for facilitating this project.


  1. 1.
    Ü. Özgür, I.Y. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. (2005). doi: 10.1063/1.1992666 Google Scholar
  2. 2.
    T. Dietl, H. Ohno, F. Matsukura, J. Clibert, D. Ferrand, Science (2000). doi: 10.1126/science.287.5455.1019 Google Scholar
  3. 3.
    G.Y. Ahn, S.I. Park, S.J. Kim, J. Magn. Magn. Mater. (2006). doi: 10.1016/j.jmmm.2006.01.100 Google Scholar
  4. 4.
    K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys. (2000). doi: 10.1143/JJAP.39.L555 Google Scholar
  5. 5.
    K. Sato, H. Katayama-Yoshida, Jpn. J. Appl. Phys. (2001). doi: 10.1143/JJAP.40.L334 Google Scholar
  6. 6.
    K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. (2001). doi: 10.1063/1.1384478 Google Scholar
  7. 7.
    T. Akilan, N. Srinivasan, R. Saravanan, P. Chowdury, Mater. Manuf. Process. (2014). doi: 10.1080/10426914.2014.880459 Google Scholar
  8. 8.
    H. Saeki, H. Tabata, T. Kwai, Solid State Commun. (2001). doi: 10.1016/S0038-1098(01)00400-8 Google Scholar
  9. 9.
    P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Nat. Mater. (2003). doi: 10.1038/nmat984 Google Scholar
  10. 10.
    K. Tanaka, K. Fukui, S. Murai, K. Fujita, Appl. Phys. Lett. (2006). doi: 10.1063/1.2234269 Google Scholar
  11. 11.
    Z. Yang, J.L. Liu, M. Biasini, W.P. Beyermann, Appl. Phys. Lett. (2008). doi: 10.1063/1.2838753 Google Scholar
  12. 12.
    W. Chen, L.F. Zhao, Y.Q. Wang, J.H. Miao, S. Liu, Z.C. Xia, S.L. Yuan, Appl. Phys. Lett. (2005). doi: 10.1063/1.1952570 Google Scholar
  13. 13.
    D.P. Norton, M.E. Overberg, S.J. Pearton, K. Pruessner, J.D. Budai, L.A. Boatner, M.F. Chisholm, J.S. Lee, Z.G. Khim, Y.D. Park, R.G. Wilson, Appl. Phys. Lett. (2003). doi: 10.1063/1.1637719 Google Scholar
  14. 14.
    J.H. Park, M.G. Kim, H.M. Jang, S. Ryu, Y.M. Kim, Appl. Phys. Lett. (2004). doi: 10.1063/1.1650915 Google Scholar
  15. 15.
    S. Ramachandran, A. Tiwari, J. Narayan, Appl. Phys. Lett. (2004). doi: 10.1063/1.1764936 Google Scholar
  16. 16.
    M.J. Chithra, K. Pushpanathan, M. Loganathan, Mater. Manuf. Process. (2014). doi: 10.1080/10426914.2014.892969 Google Scholar
  17. 17.
    R. Kumar, F. Singh, B. Angadi, J. Choi, W. Choi, K. Jeong, J. Song, M.W. Khan, J.P. Srivastava, A. Kumar, R.P. Tandon, J. Appl. Phys. (2006). doi: 10.1063/1.2399893 Google Scholar
  18. 18.
    G.L. Liu, Q. Cao, J.X. Deng, P.F. Xing, Y.F. Tian, Y.X. Chen, S.S. Yan, L.M. Mei, Appl. Phys. Lett. (2007). doi: 10.1063/1.2437111 Google Scholar
  19. 19.
    M. Gacic, H. Adrian, G. Jakob, Appl. Phys. Lett. (2008). doi: 10.1063/1.3005413 Google Scholar
  20. 20.
    X.X. Liu, F.T. Lin, L.L. Sun, W.J. Cheng, X.M. Ma, W.Z. Shi, Appl. Phys. Lett. (2006). doi: 10.1063/1.2170420 Google Scholar
  21. 21.
    W. Yu, L.H. Yang, X.Y. Teng, J.C. Zhang, Z.C. Zhang, L. Zhang, G.S. Fu, J. Appl. Phys. (2008). doi: 10.1063/1.2903524 Google Scholar
  22. 22.
    M. Snure, D. Kumar, A. Tiwari, Appl. Phys. Lett. (2009). doi: 10.1063/1.3067998 Google Scholar
  23. 23.
    P. Wu, G. Saraf, Y. Lu, D.H. Hill, R. Gateau, L. Wielunski, R.A. Bartynsk, D.A. Arena, J. Dvorak, A. Moodenbaugh, T. Siegrist, J.A. Raley, Y.K. Yeo, Appl. Phys. Lett. (2006). doi: 10.1063/1.2213519 Google Scholar
  24. 24.
    E. Chikoidze, Y. Dumont, F. Jomard, D. Ballutaud, P. Galtier, O. Gorochov, D. Ferrand, J. Appl. Phys. (2005). doi: 10.1063/1.1863132 Google Scholar
  25. 25.
    T.J.B. Holland, S.A.T. Redfern, Mineral. Mag. (1997). doi: 10.1180/minmag.1997.061.404.07 Google Scholar
  26. 26.
    H.M. Rietveld, J. Appl. Cryst. (1969). doi: 10.1107/S0021889869006558 Google Scholar
  27. 27.
    V. Petříček, M. Dušek, L. Palatinus, The Crystallographic Computing System, Jana-2000 (Institute of Physics, Academy of Sciences of the Czech Republic, Praha, 2000)Google Scholar
  28. 28.
    G.K. Wertheim, M.A. Butler, K.W. West, D.N.E. Buchanan, Rev. Sci. Instrum. (1974). doi: 10.1063/1.1686503 Google Scholar
  29. 29.
    P. Thompson, D.E. Cox, J.B. Hastings, J. Appl. Cryst. (1987). doi: 10.1107/S0021889887087090 Google Scholar
  30. 30.
    C.J. Howard, J. Appl. Cryst. (1982). doi: 10.1107/S0021889882012783 Google Scholar
  31. 31.
    A. March, Z. Kristallogr. 81, 285 (1932)Google Scholar
  32. 32.
    W.A. Dollase, Appl. Cryst. (1986). doi: 10.1107/S0021889886089458 Google Scholar
  33. 33.
    D.M. Collins, Nature (1982). doi: 10.1038/298049a0 Google Scholar
  34. 34.
    L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Loüer, P. Scardi, J. Appl. Cryst. (1999). doi: 10.1107/S0021889898009856 Google Scholar
  35. 35.
    A.D. Ruben, I. Fujio, Super-fast Program PRIMA for the Maximum-Entropy Method, Advanced materials Laboratory (National Institute for Materials Science, Ibaraki, Japan, 2004) p. 0044Google Scholar
  36. 36.
    F. Izumi, R.A. Dilanian, Recent Research Developments in Physics (Transworld Research Network, Trivandrum, 2002), pp. 699–726Google Scholar
  37. 37.
    K. Momma, F. Izumi, J. Appl. Cryst. (2008). doi: 10.1107/S0021889808012016 Google Scholar
  38. 38.
    S. Yamamura, M. Takata, M. Sakata, Y. Sugawara, J. Phys. Soc. Jpn. (1968). doi: 10.1143/JPSJ.67.4124 Google Scholar
  39. 39.
    C.J. Gilmore, Acta Crystallogr. A (1996). doi: 10.1107/S0108767396001560 Google Scholar
  40. 40.
    A.K. Livesey, J. Skilling, Acta Crystallogr. A (1985). doi: 10.1107/S0108767385000241 Google Scholar
  41. 41.
    M. Sakata, M. Sato, Acta Crystallogr. A (1990). doi: 10.1107/S0108767389012377 Google Scholar
  42. 42.
    R.Y. De Vries, W.J. Brils, D. Feil, Acta Crystallogr. A (1994). doi: 10.1107/S0108767393012802 Google Scholar
  43. 43.
    T. Kajitani, R. Saravanan, Y. Ono, K. Ohno, M. Isshiki, J. Cryst. Growth (2001). doi: 10.1016/S0022-0248(01)01107-1 Google Scholar
  44. 44.
    R. Saravanan, S. Israel, Phys. B (2004). doi: 10.1016/j.physb.2004.07.014 Google Scholar
  45. 45.
    R. Saravanan, S. Israel, R.K. Rajaram, Phys. B (2005). doi: 10.1016/j.physb.2005.03.018 Google Scholar
  46. 46.
    S. Israel, R. Saravanan, N. Srinivasan, R.K. Rajaram, J. Phys. Chem. Solids (2003). doi: 10.1016/S0022-3697(02)00208-1 Google Scholar
  47. 47.
    K.S.S. Ali, R. Saravanan, S. Israel, R.K. Rajaram, Bull. Mater. Sci. (2006). doi: 10.1007/BF02704601 Google Scholar
  48. 48.
    T. Akilan, N. Srinivasan, R. Saravanan, J. Mater. Sci.: Mater. Electron. (2014). doi: 10.1007/s10854-014-1957-4 Google Scholar
  49. 49.
    K.S.S. Ali, R. Saravanan, M. Açıkgöz, Cryst. Res. Technol. (2011). doi: 10.1002/crat.201000387 Google Scholar
  50. 50.
    K.S.S. Ali, R. Saravanan, S. Israel, M. Acrkgoz, L. Arda, Phys. B (2010). doi: 10.1016/j.physb.2010.01.036 Google Scholar
  51. 51.
    R. Saravanan, Grain software,
  52. 52.
    R. Krithiga, G. Chandrasekaran, J. Mat. Sci. (2011). doi: 10.1016/j.jcrysgro.2009.08.033 Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Research Centre and PG Department of PhysicsThiagarajar CollegeMaduraiIndia
  2. 2.Research Centre and PG Department of PhysicsThe Madura CollegeMaduraiIndia

Personalised recommendations