Facile one-step synthesis of PI/Fe3O4 composite microspheres from poly(amic acid) triethylamine salts and Fe(III) ion

  • Haoran Zhou
  • Weimiao Yu
  • Chunyan Qu
  • Changwei Liu
  • Dezhi Wang


Polyimide/magnetite composite microspheres were successfully prepared from poly(amic acid) triethylamine salts and Fe(III) ion via a simple one-step solvothermal process. The formation mechanism of the composite microspheres was explored. The morphology and the structure of the samples were characterized. It was found that polyimide has successfully coated on the surface of the magnetite microspheres and penetrated throughout the crystals via an assembly process. And the magnetic and thermal properties were measured, the results showing that composite microspheres have excellent thermal stabilities and the saturation magnetization is 35.29 emu/g with PI content of 60 wt%.


Magnetite Polyimide Magnetite Nanoparticles Thermo Gravimetric Analysis Excellent Thermal Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Yorth Science Foundation of Heilongjiang Province, China (Grant No. QC2014C008), Science Foundation of Heilongjiang Academy of Sciences, China (Nos. 2014-YQ-01, 2015-YX-02 and 2015-YQ-08).


  1. 1.
    L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Chem. Rev. 112, 5818 (2012)CrossRefGoogle Scholar
  2. 2.
    J.K. Choi, J. Lee, Y.B. Lee, J.H. Hong, I.S. Kim, Y.K. Park et al., Chem. Phys. Lett. 428, 125 (2006)CrossRefGoogle Scholar
  3. 3.
    L.S. Sundar, E.V. Ramana, M.K. Singh, A.C.M.D. Sousa, Chem. Phys. Lett. 554, 236 (2012)CrossRefGoogle Scholar
  4. 4.
    J.J. Wei, H.L. Tang, X.B. Liu, J. Mater. Sci.: Mater. Electron. 25, 520 (2014)Google Scholar
  5. 5.
    P.P. Qiu, W. Li, B. Thokchom, B. Park, M.C. Cui, D.Y. Zhao et al., J. Mater. Chem. A 3, 6492 (2015)CrossRefGoogle Scholar
  6. 6.
    X.G. Liu, N.D. Wu, C.Y. Cui, N.N. Bia, Y.P. Sun, RSC Adv. 5, 24016 (2015)CrossRefGoogle Scholar
  7. 7.
    K. Jia, J.D. Zhang, X. Huang, X.B. Liu, Chem. Phys. Lett. 614, 31 (2014)CrossRefGoogle Scholar
  8. 8.
    W. Jiang, W.F. Wang, B.C. Pan, Q.X. Zhang, W.M. Zhang, L. Lv, ACS Appl. Mater. Interfaces 6, 3421 (2014)CrossRefGoogle Scholar
  9. 9.
    M.F. Shao, F.Y. Ning, J.W. Zhao, M. Wei, D.G. Evans, X. Duan, J. Am. Chem. Soc. 134, 1071 (2012)CrossRefGoogle Scholar
  10. 10.
    X.F. Zhang, S. Mansouri, L. Clime, H.Q. Ly, L.H. Yahi, T. Veres, J. Mater. Chem. 22, 14450 (2012)CrossRefGoogle Scholar
  11. 11.
    Y. Tian, B.B. Yu, X. Li, K. Li, J. Mater. Chem. 21, 2476 (2011)CrossRefGoogle Scholar
  12. 12.
    L.S. Xiao, J.T. Li, D.F. Brougham, E.K. Fox, N. Feliu, A. Bushmelev et al., ACS Nano 5, 6315 (2011)CrossRefGoogle Scholar
  13. 13.
    D. Amara, S. Margel, J. Mater. Chem. 22, 9268 (2012)CrossRefGoogle Scholar
  14. 14.
    L.S. Lin, Z.X. Cong, J.B. Cao, K.M. Ke, Q.L. Peng, J.H. Gao et al., ACS Nano 8, 3876 (2014)CrossRefGoogle Scholar
  15. 15.
    R. Fu, X.M. Jin, J.L. Liang, W.S. Zheng, J.Q. Zhuang, W.S. Yang, J. Mater. Chem. 21, 15352 (2011)CrossRefGoogle Scholar
  16. 16.
    Y.H. Deng, D.W. Qi, C.H. Deng, X.M. Zhang, D.Y. Zhao, J. Am. Chem. Soc. 130, 28 (2008)CrossRefGoogle Scholar
  17. 17.
    T. Chen, X.Q. Zhang, J. Qian, S.J. Li, X.H. Jia, H.J. Song, J. Mater. Sci.: Mater. Electron. 25, 1381 (2014)Google Scholar
  18. 18.
    X.B. Zhang, H.W. Tong, S.M. Liu, G.P. Yong, Y.F. Guan, J. Mater. Chem. A 1, 7488 (2013)CrossRefGoogle Scholar
  19. 19.
    S.H. Xuan, Y.J. Wang, J.C. Yu, K.C.F. Leung, Langmuir 25, 11835 (2009)CrossRefGoogle Scholar
  20. 20.
    C. Wang, H. Xu, C. Liang, Y.M. Liu, Z.W. Li, G.B. Yang et al., ACS Nano 7, 6782 (2013)CrossRefGoogle Scholar
  21. 21.
    B. Xu, H.J. Dou, K. Tao, K. Sun, J. Ding, W.B. Shi et al., Langmuir 27, 12134 (2011)CrossRefGoogle Scholar
  22. 22.
    J.L. Arias, L.H. Reddy, P. Couvreur, J. Mater. Chem. 22, 7622 (2012)CrossRefGoogle Scholar
  23. 23.
    F. Lan, Y. Wu, H. Hu, L.Q. Xie, Z.W. Gu, RSC Adv. 3, 1557 (2013)CrossRefGoogle Scholar
  24. 24.
    A.H. Lu, E.L. Salabas, F. Schth, Angew. Chem. Int. Ed. 46, 1222 (2007)CrossRefGoogle Scholar
  25. 25.
    D. Taguchi, T. Manaka, M. Iwamoto, Chem. Phys. Lett. 449, 138 (2007)CrossRefGoogle Scholar
  26. 26.
    C.G. Liu, C.Y. Qu, D.Z. Wang, H. Feng, P. Liu, Y. Zhang, J. Mater. Sci.: Mater. Electron. 26, 4005 (2015)Google Scholar
  27. 27.
    D.J. Liaw, K.L. Wang, Y.C. Huang, K.R. Lee, J.Y. Lai, C.S. Ha, Prog. Polym. Sci. 37, 907 (2012)CrossRefGoogle Scholar
  28. 28.
    L. Zhang, J.T. Wu, N. Sun, X.M. Zhang, L. Jiang, J. Mater. Chem. A 2, 7666 (2014)CrossRefGoogle Scholar
  29. 29.
    J. Gao, X. Ran, C. Shi, H. Cheng, Y. Su, Nanoscale 5, 7026 (2013)CrossRefGoogle Scholar
  30. 30.
    F. Chen, R. Liu, S. Xiao, M. Lin, Mater. Lett. 130, 101 (2014)CrossRefGoogle Scholar
  31. 31.
    J.L. Castello, M. Gallardo, M.A. Busquets, J. Estelrich, Colloids Surf. A: Physicochem. Eng. Asp. 468, 151 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Material Science and EngineeringHarbin University of Science and TechnologyHarbinChina
  2. 2.Institute of PetrochemistryHeilongjiang Academy of ScienceHarbinChina
  3. 3.Institude of Advanced TechnologyHeilongjiang Academy of SciencesHarbinChina

Personalised recommendations